并发编程(二)线程并发工具类

1.Fork-Join

1.1 分而治之的设计思想

将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治策略:

对于一个规模为n的问题,若该问题可以解决,则直接解决,否则将其分解为K个模块较小的子问题,这些子问题相互独立且与原问题形式相同(子问题相互之间有管理就变成了动态规范算法),递归的解决浙西子问题,然后将子问题的解 合并得到原问题的解。

1.2 Fork/Join框架:

工作密取:

在“生产者—消费者”模式中,生产者和消费者共享一个队列,而在工作密取的情境中,每个消费者都有一个双端队列,在消费者完成了自己队列中的工作时,可以去其他消费者队列的队尾取来工作,而并不会干扰其他消费者的工作。在工作密取情境中,消费者从自己队列的队头取自己的工作,从其他消费者的队尾取别人的工作来完成。

工作密取非常适合于消费者同时也是生产者的情形,当消费者执行工作时发现有更多的工作要做,则可以将这些工作放到自己队列的末尾,也可以送到其他消费者队列的队尾;当自己队列没有工作要做时,可以去其他消费者队列取工作来完成,这样每个消费者都会保持忙碌的状态。

ForkJoinPool中维护着多个线程(一般为CPU核数)在不断地执行Task,每个线程除了执行自己职务内的Task之外,还会根据自己工作线程的闲置情况去获取其他繁忙的工作线程的Task,如此一来就能能够减少线程阻塞或是闲置的时间,提高CPU利用率。

1.3 Fork/Join使用的标准范式

ForkJoinPool pool = new ForkJoinPool();

MyTask myTask = new MyTask();

pool.invoke(myTask);

result = myTask.join();

=================================================

//invoke方法:
public <T> T invoke(ForkJoinTask<T> task) {
if (task == null)
throw new NullPointerException();
externalPush(task);
return task.join();
}

MyTask为我们自己的任务 可继承自

其中常用的有:

1)RecursiveAction ,用于没有返回结果的任务

2)RecursiveTask<V> , 用于有返回结果的任务

Task要通过ForkJoinPool来执行,使用submit 或 invoke 提交,两者的区别是:invoke是同步执行,调用之后需要等待任务完成,才能执行后面的代码;submit(有返回值) ,execute(无返回值) 是异步执行。

Task提交后完成后 可以通过task的join()和 get()方法获得返回结果

在我们自己实现的compute方法里,首先需要判断任务是否足够小,如果足够小就直接执行任务。如果不足够小,就必须分割成两个子任务,每个子任务在调用invokeAll方法时,又会进入compute方法,看看当前子任务是否需要继续分割成孙任务,如果不需要继续分割,则执行当前子任务并返回结果。使用join方法会等待子任务执行完并得到其结果。

get():等待任务执行完成,并返回计算结果

如果当前线程是ForkJoinWorkerThread,调用doJoin方法获取结果

如果当前线程不是ForkerJoinWorkerThread,调用externalInterruptibleAwaitDone方法。

任务执行完成返回后,如果任务完成状态是CANCELLED,抛出CancellationException异常。如果任务完成状态是EXCEPTIONAL,将任务执行过程中抛出的异常包装成ExecutionExcepiton重新抛出。

ForkJoinTask的几种任务状态
volatile int status; // accessed directly by pool and workers
static final int DONE_MASK = 0xf0000000; // mask out non-completion bits
static final int NORMAL = 0xf0000000; // must be negative //已完成
static final int CANCELLED = 0xc0000000; // must be < NORMAL //被取消
static final int EXCEPTIONAL = 0x80000000; // must be < CANCELLED //出现异常
static final int SIGNAL = 0x00010000; // must be >= 1 << 16 //信号
static final int SMASK = 0x0000ffff; // short bits for tags

/**
* Waits if necessary for the computation to complete, and then * retrieves its result. * * @return the computed result * @throws CancellationException if the computation was cancelled * @throws ExecutionException if the computation threw an * exception * @throws InterruptedException if the current thread is not a * member of a ForkJoinPool and was interrupted while waiting */ public final V get() throws InterruptedException, ExecutionException { int s = (Thread.currentThread() instanceof ForkJoinWorkerThread) ? doJoin() : externalInterruptibleAwaitDone(); Throwable ex; if ((s &= DONE_MASK) == CANCELLED) throw new CancellationException(); if (s == EXCEPTIONAL && (ex = getThrowableException()) != null) throw new ExecutionException(ex); return getRawResult(); }

/**
* Implementation for join, get, quietlyJoin. Directly handles
* only cases of already-completed, external wait, and
* unfork+exec. Others are relayed to ForkJoinPool.awaitJoin.
*
* @return status upon completion
*/
private int doJoin() {
int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w;
return (s = status) < 0 ? s :
((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
(w = (wt = (ForkJoinWorkerThread)t).workQueue).
tryUnpush(this) && (s = doExec()) < 0 ? s :
wt.pool.awaitJoin(w, this, 0L) :
externalAwaitDone();
}
 
/**
* Implementation for invoke, quietlyInvoke.
*
* @return status upon completion
*/
private int doInvoke() {
int s; Thread t; ForkJoinWorkerThread wt;
return (s = doExec()) < 0 ? s :
((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
(wt = (ForkJoinWorkerThread)t).pool.
awaitJoin(wt.workQueue, this, 0L) :
externalAwaitDone();
}

join():阻塞当前线程并等待获取结果,得到结果正常则返回值,得到结果异常 则抛出异常!

/**
     * Returns the result of the computation when it {@link #isDone is
     * done}.  This method differs from {@link #get()} in that
     * abnormal completion results in {@code RuntimeException} or
     * {@code Error}, not {@code ExecutionException}, and that
     * interrupts of the calling thread do <em>not</em> cause the
     * method to abruptly return by throwing {@code
     * InterruptedException}.
     *
     * @return the computed result
     */
    public final V join() {
        int s;
        if ((s = doJoin() & DONE_MASK) != NORMAL)
            reportException(s);
        return getRawResult();
    }

pool.invoke() 本身也是调用了task.join() 可以返回结果

 task.invok() 与task.join()类似 只不过调用的是doInvoke() 而非doJoin()

public class UseForkJoin {

    public static final int MAX = 100;

    private static class SumTask extends RecursiveTask<Integer> {

        /**
         * 自定义的任务大小
         */
        private int perSize = MAX / 10;
        /**
         * 起始数
         */
        private int fromIndex;
        /**
         * 结尾数
         */
        private int toIndex;

        public SumTask(int fromIndex, int toIndex) {
            this.fromIndex = fromIndex;
            this.toIndex = toIndex;
        }

        @Override
        protected Integer compute() {
            if (toIndex - fromIndex < perSize) {
                int count = 0;
                for (int i = fromIndex; i <= toIndex; i++) {
                    count = count + i;
                }
                return count;
            } else {
                int mid = (fromIndex + toIndex) / 2;
                SumTask left = new SumTask(fromIndex, mid);
                SumTask right = new SumTask(mid + 1, toIndex);
                invokeAll(left, right);//此处invokeAll会不断的调用执行compute方法 直到满足toIndex-fromIndex<perSize (递归)
                return left.join() + right.join();
            }
        }
    }

    public static void main(String[] args) {
        //范式
        ForkJoinPool pool = new ForkJoinPool();
        SumTask task = new SumTask(0, 100);
//        Integer invoke = pool.invoke(task);
        pool.invoke(task);
        Integer join = task.join();
        System.out.println(join);

    }
}

2.CountDownLatch

CountDownLatch这个类能够使一个线程等待其他线程完成各自的工作后再执行。如主线程在其他初始化线程启动完成后再执行。 闭锁:闭锁是一种同步工具,可以延迟线程直到其达到其终止状态。

CountDowmLatch是通过一个计数器来实现的,计数器的初始值为初始任务量。每当完成一个任务后,计数器的值就会减1(countDown()方法).,当计数器的值达到0时,表示所有任务已完成 然后 闭锁上 等待 await() 方法的线程就可以恢复执行任务。

public class UserCountDownLatch {

    static CountDownLatch latch = new CountDownLatch(6);

    private static class CountThread extends Thread {
        @Override
        public void run() {
            System.out.println("CountThread running...");
            SleepTools.second(1);
            System.out.println("CountThread end");
            latch.countDown();
        }
    }

    private static class BusThread extends Thread {
        @Override
        public void run() {
            try {
                latch.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            for (int i = 0; i < 4; i++) {
                System.out.println("BusThread" + Thread.currentThread().getId()
                        + " do business-----");
            }
        }
    }

    private static class afterThread implements Runnable {

        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + " init something...");
            latch.countDown();
            System.out.println("init complete!");

            System.out.println("after init do something...");
            SleepTools.second(2);
            System.out.println("after end...");
            latch.countDown();

        }
    }

    public static void main(String[] args) {
        new BusThread().start();
        for (int i = 0; i < 3; i++) {
            new CountThread().start();
        }
        new Thread(new afterThread()).start();
        System.out.println("main is running...");
        SleepTools.second(3);
        System.out.println("main end!");
        latch.countDown();
    }
}

 3.CyclicBarrier

栅栏类似于闭锁,它能阻塞一组线程直到某个事件的发生。栅栏与闭锁的关键区别在于,所有的线程必须同时到达栅栏位置,才能继续执行。闭锁用于等待事件,而栅栏用于等待其他线程。

public class UseCyclicBarrier {

    //    static CyclicBarrier barrier = new CyclicBarrier(4);
    static CyclicBarrier barrier = new CyclicBarrier(4, new CollectThread());

    private static ConcurrentHashMap<String, Long> resultMap = new ConcurrentHashMap<>();

    /**
     * 汇总线程(barrierAction) 当屏障都执行(触发)完成后执行该线程任务
     * the command to execute when the barrier is tripped
     */
    private static class CollectThread implements Runnable {

        @Override
        public void run() {
            StringBuffer result = new StringBuffer();
            for (Map.Entry<String, Long> workResult : resultMap.entrySet()) {
                result.append(workResult.getValue() + ",");
            }
            System.out.println(" the result = " + result);
            System.out.println("do other thing........");
        }
    }

    /**
     * 相互等待的线程,所有的线程调用await()以后才一同执行之后的业务逻辑
     * barrier可重复调用,在次调用 完成 会再次触发 CollectThread
     */
    private static class SubThread implements Runnable {

        @Override
        public void run() {
            long id = Thread.currentThread().getId();
            resultMap.put(Thread.currentThread().getId() + "", id);

            try {
                SleepTools.ms(1000);
                System.out.println("Thread " + id + "is running...");
                barrier.await();
                System.out.println("Thread " + id + "is end...");
                //barrier可重复调用,在次调用 完成 会再次触发 CollectThread
                //barrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (BrokenBarrierException e) {
                e.printStackTrace();
            }
        }
    }


    public static void main(String[] args) {
        /**
         * 主线程中并没有调用CollectThread
         */
        for (int i = 0; i < 4; i++) {
            Thread thread = new Thread(new SubThread());
            thread.start();
        }
    }
}

4.Semaphore 信号量

Semaphore类是一个计数信号量,必须由获取它的线程释放, 通常用于限制可以访问某些资源(物理或逻辑的)线程数目。

一个信号量有且仅有3种操作,且它们全部是原子的:初始化、增加和减少 
增加可以为一个进程解除阻塞-> acquire()
减少可以让一个进程进入阻塞-> release() 

public class UseSemaphore2 {

    static Semaphore semaphore = new Semaphore(10);
    /**
     * 存放资源的容器
     */
    private static LinkedList<Integer> list = new LinkedList<>();

    /**
     * 释放资源
     */
    public void release() {

        synchronized (list) {
            list.addLast(new Random().nextInt(100));
        }
        /**
         * 将许可证放回,释放资源  通知没有拿到资源的一方执行
         */
        semaphore.release();
        System.out.println(Thread.currentThread().getId() + " 释放了资源。。。" + semaphore.availablePermits());
    }


    /**
     * 获取资源
     */
    public void fetch() {

        /**
         * acquire()拿不到许可证 时会等待,拿到了继续执行
         * 获取到许可证后 许可证总量减少
         */
        try {
            semaphore.acquire();
            SleepTools.second(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        synchronized (list) {
            if (list.size() > 0) {
                list.removeFirst();
            }
        }
        System.out.println(Thread.currentThread().getId() + " 获取资源。。。" + semaphore.availablePermits());
    }


    private static class BusThread implements Runnable {
        private UseSemaphore2 semaphore;

        public BusThread(UseSemaphore2 semaphore) {
            this.semaphore = semaphore;
        }

        @Override
        public void run() {
            semaphore.fetch();
            semaphore.release();
        }
    }

    public static void main(String[] args) {

        UseSemaphore2 semaphore = new UseSemaphore2();
        for (int i = 0; i < 50; i++) {
            new Thread(new BusThread(semaphore)).start();
        }
    }

}

 5.Exchanger 

可用于两个线程之间交换信息。可简单地将Exchanger对象理解为一个包含两个格子的容器,通过exchanger方法可以向两个格子中填充信息。当两个格子中的均被填充时,该对象会自动将两个格子的信息交换,然后返回给线程,从而实现两个线程的信息交换。

public class UseExchange {
    private static final Exchanger<Set<String>> exchange = new Exchanger<Set<String>>();

    public static void main(String[] args) {

        new Thread(new Runnable() {
            @Override
            public void run() {
                Set<String> setA = new HashSet<String>();//存放数据的容器
                try {
                    setA.add("A1");
                    setA.add("A2");
                    setA.add("A3");
                    setA = exchange.exchange(setA);//交换set
                    /*处理交换后的数据*/
                    Iterator<String> iterator = setA.iterator();
                    while (iterator.hasNext()) {
                        System.out.println("after exchange setA:" + iterator.next());
                    }
                } catch (InterruptedException e) {
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                Set<String> setB = new HashSet<String>();//存放数据的容器
                try {
                    setB.add("B1");
                    setB.add("B2");
                    setB.add("B3");
                    setB.add("B4");
                    setB = exchange.exchange(setB);//交换set
                    /*处理交换后的数据*/
                    Iterator<String> iterator = setB.iterator();
                    while (iterator.hasNext()) {
                        System.out.println("after exchange setB:" + iterator.next());
                    }
                } catch (InterruptedException e) {
                }
            }
        }).start();

    }
}

5.Callable,Future,FutureTask

前面说过 启动一个线程有两种方式, 继承自Thread 或是 实现Runnable,然后交给Thread运行,但是这两种方式启动线程都没有返回结果。

Future :在 java.util.concurrent包中提供了Future 对于具体的Runnable或者Callable任务的执行结果进行取消,查询是否完成,获取结果。必要时通过get方法获取执行结果,该方法会阻塞直到任务返回结果。

Callable : 同样位于java.util.concurrent包下,是一个泛型接口,通过 call()方法能够返回泛型结果 或是抛出异常。和Runnable有相似之处,但Runnable并不能返回结果 或是抛出异常。

/**
 * A task that returns a result and may throw an exception.
 * Implementors define a single method with no arguments called
 * {@code call}.
 *
 * <p>The {@code Callable} interface is similar to {@link
 * java.lang.Runnable}, in that both are designed for classes whose
 * instances are potentially executed by another thread.  A
 * {@code Runnable}, however, does not return a result and cannot
 * throw a checked exception.
 *
 * <p>The {@link Executors} class contains utility methods to
 * convert from other common forms to {@code Callable} classes.
 *
 * @see Executor
 * @since 1.5
 * @author Doug Lea
 * @param <V> the result type of method {@code call}
 */
@FunctionalInterface
public interface Callable<V> {
    /**
     * Computes a result, or throws an exception if unable to do so.
     *
     * @return computed result
     * @throws Exception if unable to compute a result
     */
    V call() throws Exception;
}

FutureTask:由于FutureTask仅仅是一个接口,无法直接用来创建对象因此有了FutureTask

/**
 * A {@link Future} that is {@link Runnable}. Successful execution of
 * the {@code run} method causes completion of the {@code Future}
 * and allows access to its results.
 * @see FutureTask
 * @see Executor
 * @since 1.6
 * @author Doug Lea
 * @param <V> The result type returned by this Future's {@code get} method
 */
public interface RunnableFuture<V> extends Runnable, Future<V> {
    /**
     * Sets this Future to the result of its computation
     * unless it has been cancelled.
     */
    void run();
}

由于FutureTask实现了RunnableFuture ,RunnableFuture 同时继承了Runnbale和Future

所以我们需要通过FutureTask把一个Callable包装成Runnable,然后再通过这个FutureTask拿到Callable运行后的返回值。

public class UserCallable {

private static class CallThread implements Callable<Integer> {
@Override
public Integer call() throws Exception {
int result = 0;
for (int i = 0; i <= 100; i++) {
result += i;
}
System.out.println("Call result:" + result);
return result;
}
}

public static void main(String[] args) throws ExecutionException, InterruptedException {
FutureTask<Integer> task = new FutureTask<Integer>(new CallThread());
new Thread(task).start();
Integer integer = task.get();
System.out.println("main result:" + integer);
}
}

参考:http://enjoy.ke.qq.com

原文地址:https://www.cnblogs.com/cangshublogs/p/10752002.html