Tensorflow暑期实践——基于单个神经元的手写数字识别

版权说明:浙江财经大学专业实践深度学习tensorflow——齐峰

基于单个神经元的手写数字识别

目录

本章内容介绍

** 本章将介绍如何使用Tensorflow建立神经网络,训练、评估模型并使用训练好的模型识别手写数字MNIST。 **



** 关于MNIST数据集的介绍 **

详见:mnist_introduce.ipynb



** 由简入繁,首先,构建由单个神经元组成的神经网络,然后尝试将模型加宽和加深,以提高分类准确率。 **

** 参考范例程序: **

  • 单个神经元:mnist_single_neuron.ipynb
  • 单隐层神经网络:mnist_h256.ipynb
  • 多隐层神经网络:mnist_h256_h256.ipynb

Tensorflow实现基于单个神经元的手写数字识别

神经元函数及优化方法

单个神经元的网络模型

** 网络模型 **

图1. 单个神经元的网络模型

计算公式如下:

[{ m {output}}=f(z)=f(sum_{i=1}^n w_i imes x_i + b) ]

其中,(z)为输出结果,(x_i)为输入,(w_i)为相应的权重,(b)为偏置,(f)为激活函数。

** 正向传播 **

数据是从输入端流向输出端的,当赋予(w)(b)合适的值并结合合适的激活函数时,可产生很好的拟合效果。

** 反向传播 **

  • 反向传播的意义在于,告诉我们需要将w和b调整到多少。
  • 在刚开始没有得到合适的w和b时,正向传播所产生的结果与真实值之间存在误差,反向传播就是利用这个误差信号修正w和b的取值,从而获得一个与真实值更加接近的输出。
  • 在实际训练过程中,往往需要多次调整(w)(b),直至模型输出值与真实值小于某个阈值。

激活函数

运行时激活神经网络中部分神经元,将激活信息向后传入下一层神经网络。

激活函数的主要作用是,加入非线性因素,以解决线性模型表达能力不足的问题。



** 常用激活函数 **

  • (1)** Sigmoid **,在Tensorflow中对应函数为:tf.nn.sigmoid(x, name=None)
  • (2)** Tanh **,在Tensorflow中对应函数为:tf.nn.tanh(x, name=None)
  • (3)** Relu **,在Tensorflow中对应函数为:tf.nn.relu(x, name=None)

载入数据

import tensorflow as tf 
import os 
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
print(tf.__version__)
print(tf.test.is_gpu_available())
1.12.0
False
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
WARNING:tensorflow:From <ipython-input-2-8bf8ae5a5303>:2: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
WARNING:tensorflow:From E:ProgramDataAnaconda3libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
Instructions for updating:
Please write your own downloading logic.
WARNING:tensorflow:From E:ProgramDataAnaconda3libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting MNIST_data/train-images-idx3-ubyte.gz
WARNING:tensorflow:From E:ProgramDataAnaconda3libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting MNIST_data/train-labels-idx1-ubyte.gz
WARNING:tensorflow:From E:ProgramDataAnaconda3libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.one_hot on tensors.
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From E:ProgramDataAnaconda3libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.

构建模型

** 定义(x)(y)的占位符 **

tf.reset_default_graph() #清除default graph和不断增加的节点

x = tf.placeholder(tf.float32, [None, 784]) # mnist 中每张图片共有28*28=784个像素点
y = tf.placeholder(tf.float32, [None, 10]) # 0-9 一共10个数字=> 10 个类别

** 创建变量 **

在神经网络中,权值(W)的初始值通常设为正态分布的随机数,偏置项(b)的初始值通常也设为正态分布的随机数或常数。在Tensorflow中,通常利用以下函数实现正态分布随机数的生成:

** tf.random_normal **

norm = tf.random_normal([100]) #生成100个随机数
with tf.Session() as sess:
    norm_data=norm.eval()
print(norm_data[:10])                  #打印前10个随机数
[-0.8566289   1.2637379  -0.37130925  0.76486456  0.3292667   0.22041267
  0.2905729   0.04571301 -0.43698135 -0.11702691]
import matplotlib.pyplot as plt
plt.hist(norm_data)
plt.show()
<Figure size 640x480 with 1 Axes>

在本案例中,以正态分布的随机数初始化权重(W),以常数0初始化偏置(b)

W = tf.Variable(tf.random_normal([784, 10]))
b = tf.Variable(tf.zeros([10])) 

** 用单个神经元构建神经网络 **

forward=tf.matmul(x, W) + b # 前向输出
tf.summary.histogram('forward',forward)#将前向输出值以直方图显示
<tf.Tensor 'forward:0' shape=() dtype=string>

示例中在执行训练后在tensorboard界面可查看到如下关于forward的直方图:

<img src="forward_hist_single.jpg"width=400 height=400 />

** 关于Softmax Regression **

当我们处理多分类任务时,通常需要使用Softmax Regression模型。

Softmax Regression会对每一类别估算出一个概率。

** 工作原理: **将判定为某一类的特征相加,然后将这些特征转化为判定是这一类的概率。

pred = tf.nn.softmax(forward) # Softmax分类

训练模型

** 设置训练参数 **

train_epochs = 30
batch_size = 100
total_batch= int(mnist.train.num_examples/batch_size)
display_step = 1
learning_rate=0.01

** 定义损失函数 **

loss_function = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1)) # 交叉熵
tf.summary.scalar('loss', loss_function)#将损失以标量显示

<tf.Tensor 'loss:0' shape=() dtype=string>

** 选择优化器 **

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function) #梯度下降

** 定义准确率 **

# 检查预测类别tf.argmax(pred, 1)与实际类别tf.argmax(y, 1)的匹配情况
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# 准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 将布尔值转化为浮点数,并计算平均值

tf.summary.scalar('accuracy', accuracy)#将准确率以标量显示
<tf.Tensor 'accuracy:0' shape=() dtype=string>
sess = tf.Session() #声明会话
init = tf.global_variables_initializer() # 变量初始化
sess.run(init)
merged_summary_op = tf.summary.merge_all()#合并所有summary
writer = tf.summary.FileWriter('log/mnist_single_neuron', sess.graph) #创建写入符

# 开始训练
for epoch in range(train_epochs ):
    for batch in range(total_batch):
        xs, ys = mnist.train.next_batch(batch_size)# 读取批次数据
        sess.run(optimizer,feed_dict={x: xs,y: ys}) # 执行批次训练
        
        #生成summary
        summary_str = sess.run(merged_summary_op,feed_dict={x: xs,y: ys})
        writer.add_summary(summary_str, epoch)#将summary 写入文件
        #total_batch个批次训练完成后,使用验证数据计算误差与准确率   
    loss,acc = sess.run([loss_function,accuracy],
                        feed_dict={x: mnist.validation.images, y: mnist.validation.labels})
    # 打印训练过程中的详细信息
    if (epoch+1) % display_step == 0:
        print("Train Epoch:", '%02d' % (epoch+1), "Loss=", "{:.9f}".format(loss)," Accuracy=","{:.4f}".format(acc))

print("Train Finished!")  
Train Epoch: 01 Loss= 5.594824791  Accuracy= 0.2620
Train Epoch: 02 Loss= 3.323985577  Accuracy= 0.4562
Train Epoch: 03 Loss= 2.485962391  Accuracy= 0.5586
Train Epoch: 04 Loss= 2.052196503  Accuracy= 0.6244
Train Epoch: 05 Loss= 1.785376191  Accuracy= 0.6610
Train Epoch: 06 Loss= 1.601655483  Accuracy= 0.6886
Train Epoch: 07 Loss= 1.467257380  Accuracy= 0.7118
Train Epoch: 08 Loss= 1.363661408  Accuracy= 0.7296
Train Epoch: 09 Loss= 1.280923843  Accuracy= 0.7432
Train Epoch: 10 Loss= 1.212942958  Accuracy= 0.7546
Train Epoch: 11 Loss= 1.156675100  Accuracy= 0.7652
Train Epoch: 12 Loss= 1.108838320  Accuracy= 0.7742
Train Epoch: 13 Loss= 1.067099810  Accuracy= 0.7810
Train Epoch: 14 Loss= 1.031150222  Accuracy= 0.7884
Train Epoch: 15 Loss= 0.999342263  Accuracy= 0.7938
Train Epoch: 16 Loss= 0.971206069  Accuracy= 0.7996
Train Epoch: 17 Loss= 0.945592284  Accuracy= 0.8046
Train Epoch: 18 Loss= 0.923156917  Accuracy= 0.8094
Train Epoch: 19 Loss= 0.901953936  Accuracy= 0.8142
Train Epoch: 20 Loss= 0.882337689  Accuracy= 0.8188
Train Epoch: 21 Loss= 0.864885747  Accuracy= 0.8220
Train Epoch: 22 Loss= 0.848752856  Accuracy= 0.8242
Train Epoch: 23 Loss= 0.833763659  Accuracy= 0.8264
Train Epoch: 24 Loss= 0.820160329  Accuracy= 0.8276
Train Epoch: 25 Loss= 0.806553364  Accuracy= 0.8286
Train Epoch: 26 Loss= 0.794732749  Accuracy= 0.8310
Train Epoch: 27 Loss= 0.783382237  Accuracy= 0.8350
Train Epoch: 28 Loss= 0.772144020  Accuracy= 0.8370
Train Epoch: 29 Loss= 0.762202621  Accuracy= 0.8372
Train Epoch: 30 Loss= 0.752200246  Accuracy= 0.8388
Train Finished!

从上述打印结果可以看出损失值** Loss 是趋于更小的,同时,准确率 Accuracy **越来越高。

此外,我们还可以通过Tensorboard查看loss和accuracy的执行过程。



通过tensorboard --logdir=log/mnist_single_neuron进入可视化界面,在scalar版面中可以查看loss和accuracy,如下图所示:

评估模型

** 完成训练后,在测试集上评估模型的准确率 **

print("Test Accuracy:", sess.run(accuracy,
                           feed_dict={x: mnist.test.images, y: mnist.test.labels}))
Test Accuracy: 0.8358

进行预测

** 在建立模型并进行训练后,若认为准确率可以接受,则可以使用此模型进行预测。 **

prediction_result=sess.run(tf.argmax(pred,1), # 由于pred预测结果是one-hot编码格式,所以需要转换为0~9数字
                           feed_dict={x: mnist.test.images })

** 查看预测结果 **

prediction_result[0:10] #查看预测结果中的前10项
array([7, 6, 1, 0, 4, 1, 4, 9, 6, 9], dtype=int64)

** 定义可视化函数 **

import matplotlib.pyplot as plt
import numpy as np
def plot_images_labels_prediction(images,labels,
                                  prediction,idx,num=10):
    fig = plt.gcf()
    fig.set_size_inches(10, 12)
    if num>25: num=25 
    for i in range(0, num):
        ax=plt.subplot(5,5, 1+i)
        
        ax.imshow(np.reshape(images[idx],(28, 28)), 
                  cmap='binary')
            
        title= "label=" +str(np.argmax(labels[idx]))
        if len(prediction)>0:
            title+=",predict="+str(prediction[idx]) 
            
        ax.set_title(title,fontsize=10) 
        ax.set_xticks([]);ax.set_yticks([])        
        idx+=1 
    plt.show()
plot_images_labels_prediction(mnist.test.images,
                              mnist.test.labels,
                              prediction_result,0)

从上面结果可知,通过30次迭代所训练的由** 单个神经元 构成的神经网络模型,在测试集上能够取得百分之八十以上的准确率。接下来,我们将尝试 加宽 加深 **模型,看看能否得到更高的准确率。

# 预测结果
plot_images_labels_prediction(mnist.test.images,
                             mnist.test.labels,
                             prediction_result,10,25)

原文地址:https://www.cnblogs.com/caiyishuai/p/13273109.html