uoj#269. 【清华集训2016】如何优雅地求和(数论)

传送门

首先,如果(f(x)=1),那么根据二项式定理,有(Q(f,n,k)=1)

(f(x)=x)的时候,有$$Q=sum_{i=0}^ni imes frac{n!}{i!(n-i)!}k^i(1-k)^{n-i}$$

[Q=sum_{i=0}^nnk imes frac{(n-1)!}{(i-1)!(n-i)!}k^{i-1}(1-k)^{n-i} ]

[Q=nksum_{i=0}^nfrac{(n-1)!}{(i-1)!(n-i)!}k^{i-1}(1-k)^{n-i} ]

[Q=nksum_{i=0}^n{n-1choose i-1}k^{i-1}(1-k)^{n-i} ]

根据二项式定理后面的等于(1),所以(Q=nk)

然后我们发现,如果(f(x)=x^{underline{d}}),则有(Q=n^{underline{d}}k^d),其中(x^{underline{d}})(x)(d)次下降幂,为(x(x-1)...(x-d+1)),证明和上面的差不多当

[Q=sum_{i=0}^ni^{underline{d}} imes frac{n!}{i!(n-i)!}k^i(1-k)^{n-i} ]

[Q=sum_{i=0}^nn^{underline{d}}x^d imes frac{(n-d)!}{(i-d)!(n-i)!}k^{i-d}(1-k)^{n-i} ]

[Q=n^{underline{d}}k^dsum_{i=0}^n frac{(n-d)!}{(i-d)!(n-i)!}k^{i-d}(1-k)^{n-i} ]

[Q=n^{underline{d}}k^dsum_{i=0}^n{n-dchoose i-d}k^{i-d}(1-k)^{n-i} ]

后面那个还是等于(1)

根据乘法分配律,如果(f(x)=sum_{i=0}^m a_ix^{underline{i}}),那么(Q(f,n,x)=sum_{i=0}^m a_i imes Q(x^{underline{i}},n,k))

考虑如何计算(a_i),记(b_i=frac{a_i}{i!}),那么(f(x)=sum_{i=0}^m b_ifrac{x^{underline{i}}}{i!}=sum_{i=0}^m b_i{xchoose i})

不要忘了我们已知(x=0,1,...,m)(f(x))的值

(x=0)时,(f(x)=b_0)

( riangle f(x)=f(x+1)-f(x)),即一阶差分,因为({x+1choose i}-{xchoose i}={xchoose i-1}),所有( riangle f(x)=sum_{i=1}^m b_i{xchoose i-1}),那么( riangle f(0)=b_1)

同理,( riangle^kf(0)=b_k),即(k)阶差分后(0)处的值为(b_k)

因为std写的是(O(m^2))的我们不能辜负出题人的一片好心,所以直接(O(m^2))暴力就好了(据说这里可以用$FFT优化然而懒了233)

然后没有然后了

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
    R int res,f=1;R char ch;
    while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
    for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
    return res*f;
}
const int N=2e4+5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
	R int res=1;
	for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
	return res;
}
int b[N],n,m,k,ans,p=1;
int main(){
//	freopen("testdata.in","r",stdin);
	n=read(),m=read(),k=read();
	fp(i,0,m)b[i]=read();
	fp(i,0,m){
		ans=add(ans,mul(p,b[0]));
		fp(j,0,m-i-1)b[j]=dec(b[j+1],b[j]);
		p=1ll*p*k%P*(n-i)%P*ksm(i+1,P-2)%P;
	}printf("%d
",ans);
	return 0;
}
原文地址:https://www.cnblogs.com/bztMinamoto/p/10237912.html