LeetCode解题报告:Binary Tree Postorder Traversal

Given a binary tree, return the postorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
    
     2
    /
   3

return [3,2,1].

Note: Recursive solution is trivial, could you do it iteratively?

1.递归算法的递归定义是:

若二叉树为空,则遍历结束;否则
⑴ 后序遍历左子树(递归调用本算法);
⑵ 后序遍历右子树(递归调用本算法) ;
⑶ 访问根结点 。

对有n个结点的二叉树,其时间复杂度均为O(n) 。

1 List<Integer> postOrder = new ArrayList<Integer>();
2 public List<Integer> postorderRecursion(TreeNode root) {
3         if ((root != null) && (root.val != '#')) {
4             postorderRecursion(root.left);
5             postorderRecursion(root.right);
6             postOrder.add(root.val);
7         }
8         return postOrder;
9     }

2.非递归算法

   在后序遍历中,根结点是最后被访问的。因此,在遍历过程中,当搜索指针指向某一根结点时,不能立即访问,而要先遍历其左子树,此时根结点进栈。当其左子树遍历完后再搜索到该根结点时,还是不能访问,还需遍历其右子树。所以,此根结点还需再次进栈,当其右子树遍历完后再退栈到到该根结点时,才能被访问。

    因此,设立一个状态标志变量tag :{ 0 : 结点暂不能访问;1 : 结点可以被访问}。

   其次,设两个堆栈S1、S2 ,S1保存结点,S2保存结点的状态标志变量tag 。S1和S2共用一个栈顶指针。

      设T是指向根结点的指针变量,非递归算法是:

若二叉树为空,则返回;否则,令p=T;

⑴ 第一次经过根结点p,不访问:

     p进栈S1 , tag 赋值0,进栈S2,p=p->Lchild 。

⑵ 若p不为空,转(1),否则,取状态标志值tag :

 ⑶ 若tag=0:对栈S1,不访问,不出栈;修改S2栈顶元素值(tag赋值1) ,取S1栈顶元素的右子树,即p=S1[top]->Rchild ,转(1);

⑷ 若tag=1:S1退栈,访问该结点;

直到栈空为止。

 1 List<Integer> postOrder = new ArrayList<Integer>();
 2 public List<Integer> postorderTraversal(TreeNode p) {
 3         Stack<TreeNode> stack = new Stack<TreeNode>();
 4         Stack<Boolean> tag = new Stack<Boolean>();
 5         while ((p != null) || !stack.isEmpty()) {
 6             if (p != null) {
 7                 stack.push(p);
 8                 tag.push(false);
 9                 p = p.left;
10             } else {
11                 boolean visit = tag.pop();
12                 if (visit) {
13                     postOrder.add(stack.pop().val);
14                 } else {
15                     tag.push(true);
16                     p = stack.peek().right;
17                 }
18             }
19         }
20         return postOrder;
21     }

二叉树的三种遍历递归和非递归实现:递归实现都简单;非递归的前序和中序实现简单,后序采用2个栈来实现(参考严蔚敏的思路,比较容易理解)。代码如下:

  1 import java.util.ArrayList;
  2 import java.util.List;
  3 import java.util.Stack;
  4 
  5 import javax.swing.text.AbstractDocument.LeafElement;
  6 
  7 /**
  8  * Definition for binary tree public class TreeNode { int val; TreeNode left;
  9  * TreeNode right; TreeNode(int x) { val = x; } }
 10  */
 11 public class TreeNodeSolution {
 12 
 13     public List<Integer> preorderRecursion(TreeNode root) {
 14         List<Integer> preOrder = new ArrayList<Integer>();
 15         if ((root != null) && (root.val != '#')) {
 16             preOrder.add(root.val);
 17             postorderRecursion(root.left);
 18             postorderRecursion(root.right);
 19         }
 20         return preOrder;
 21     }
 22 
 23     public List<Integer> inorderRecursion(TreeNode root) {
 24         List<Integer> inOrder = new ArrayList<Integer>();
 25         if ((root != null) && (root.val != '#')) {
 26             postorderRecursion(root.left);
 27             inOrder.add(root.val);
 28             postorderRecursion(root.right);
 29         }
 30         return inOrder;
 31     }
 32 
 33     public List<Integer> postorderRecursion(TreeNode root) {
 34         List<Integer> postOrder = new ArrayList<Integer>();
 35         if ((root != null) && (root.val != '#')) {
 36             postorderRecursion(root.left);
 37             postorderRecursion(root.right);
 38             postOrder.add(root.val);
 39         }
 40         return postOrder;
 41     }
 42 
 43     public List<Integer> inorderTraversal(TreeNode p) {
 44         List<Integer> inOrder = new ArrayList<Integer>();
 45         Stack<TreeNode> stack = new Stack<TreeNode>();
 46         while ((p != null) || !stack.isEmpty()) {
 47             if (p != null) {
 48                 stack.push(p);
 49                 p = p.left;
 50             } else {
 51                 p = stack.pop();
 52                 inOrder.add(p.val);
 53                 p = p.right;
 54             }
 55         }
 56         return inOrder;
 57     }
 58 
 59     public List<Integer> preorderTraversal(TreeNode p) {
 60         List<Integer> preOrder = new ArrayList<Integer>();
 61         Stack<TreeNode> stack = new Stack<TreeNode>();
 62         while ((p != null) || !stack.isEmpty()) {
 63             if (p != null) {
 64                 preOrder.add(p.val);
 65                 stack.push(p);
 66                 p = p.left;
 67             } else {
 68                 p = stack.pop();
 69                 p = p.right;
 70             }
 71         }
 72         return preOrder;
 73     }
 74 
 75     public List<Integer> postorderTraversal(TreeNode p) {
 76         List<Integer> postOrder = new ArrayList<Integer>();
 77         Stack<TreeNode> stack = new Stack<TreeNode>();
 78         Stack<Boolean> tag = new Stack<Boolean>();
 79         while ((p != null) || !stack.isEmpty()) {
 80             if (p != null) {
 81                 stack.push(p);
 82                 tag.push(false);
 83                 p = p.left;
 84             } else {
 85                 boolean visit = tag.pop();
 86                 if (visit) {
 87                     postOrder.add(stack.pop().val);
 88                 } else {
 89                     tag.push(true);
 90                     p = stack.peek().right;
 91                 }
 92             }
 93         }
 94         return postOrder;
 95     }
 96 
 97     public static void main(String[] args) {
 98         TreeNode t1 = new TreeNode(1);
 99         TreeNode t2 = new TreeNode(2);
100         TreeNode t3 = new TreeNode(3);
101         t1.setRight(t2);
102         t1.setLeft(t3);
103         System.out.println(new TreeNodeSolution().postorderTraversal(t1));
104     }
105 }
View Code
原文地址:https://www.cnblogs.com/byrhuangqiang/p/3790857.html