洛谷 P1516 青蛙的约会 解题报告

P1516 青蛙的约会

题目描述

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。

我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

输入输出格式

输入格式:

输入只包括一行5个整数(x)(y)(m)(n)(L)

其中(0<x≠y<=2000000000)(0 < m,n < =2000000000)(0 < L < =2100000000)

输出格式:

输出碰面所需要的天数,如果永远不可能碰面则输出一行"Impossible"。


exgcd还是有不少小细节的,以前没做过题不知道

首先 我们需要解同余方程

(nx+a equiv mx+b (mod l))

移项 ((n-m)x equiv b-a (mod l))

我们确保((n-m))是正的,因为待会要用扩欧

等价于不定方程 ((n-m)x-ly=b-a)

(q=n-m,p=-l,d=b-a)

(qx+py=d)

根据裴蜀定理,有解的判定为 (gcd(q,p)|d)

剩下的就是扩展欧几里得的事情了

通解为 模 (l/gcd(q,p)) 意义下的

为什么呢?

假设我们已经得到特解(x_0)

则设有通解(x=x_0+kt),(k)为遍历的整数,我们要求出(t)

带回原式

(py=-q(x_0+kt)+d)

(p)除过去,保证(y)为整数

因为(p|d-qx_0)(我们已经解出了这个方程)

所以我们只需要满足(p|qkt)即可

发现(t)需要补充(p/gcd(q,p))以外的部分

(p=-l)

所以通解为 模 (l/gcd(q,p)) 意义下的


Code:

#include <cstdio>
#define ll long long
void exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1,y=0;
        return;
    }
    exgcd(b,a%b,x,y);
    ll tmp=x;
    x=y;
    y=tmp-a/b*y;
}
void swap(ll &x,ll &y)
{
    ll tmp=x;x=y;y=tmp;
}
ll gcd(ll a,ll b)
{
    return b?gcd(b,a%b):a;
}
int main()
{
    ll a,b,n,m,l;
    scanf("%lld%lld%lld%lld%lld",&a,&b,&n,&m,&l);
    if(n<m) swap(n,m),swap(a,b);
    ll d=((b-a)%l+l)%l;
    a=n-m,b=l;
    ll bas=gcd(a,b);
    if(d%bas!=0) {printf("Impossible
");return 0;}
    d/=bas,a/=bas,b/=bas,l/=bas;
    ll x,y;
    exgcd(a,b,x,y);
    printf("%lld
",(x*d%l+l)%l);
    return 0;
}

2018.8.8

原文地址:https://www.cnblogs.com/butterflydew/p/9446003.html