内核中do while(0)的巧用 避免goto的方法 linux内核中代码有这样的代码

1. do...while(0)消除goto语句。
通常,如果在一个函数中开始要分配一些资源,然后在中途执行过程中如果遇到错误则退出函数,当然,退出前先释放资源,我们的代码可能是这样:
version 1

bool Execute()
{
   // 分配资源
   int *p = new int;
   bool bOk(true);

   // 执行并进行错误处理
   bOk = func1();
   if(!bOk) 
   {
      delete p;   
      p = NULL;
      return false;
   }

   bOk = func2();
   if(!bOk) 
   {
      delete p;   
      p = NULL;
      return false;
   }

   bOk = func3();
   if(!bOk) 
   {
      delete p;   
      p = NULL;
      return false;
   }

   // ..........

   // 执行成功,释放资源并返回
    delete p;   
    p = NULL;
    return true;
   
}


这里一个最大的问题就是代码的冗余,而且我每增加一个操作,就需要做相应的错误处理,非常不灵活。于是我们想到了goto:
version 2

bool Execute()
{
   // 分配资源
   int *p = new int;
   bool bOk(true);

   // 执行并进行错误处理
   bOk = func1();
   if(!bOk) goto errorhandle;

   bOk = func2();
   if(!bOk) goto errorhandle;

   bOk = func3();
   if(!bOk) goto errorhandle;

   // ..........

   // 执行成功,释放资源并返回
    delete p;   
    p = NULL;
    return true;

errorhandle:
    delete p;   
    p = NULL;
    return false;
   
}


代码冗余是消除了,但是我们引入了C++中身份比较微妙的goto语句,虽然正确的使用goto可以大大提高程序的灵活性与简洁性,但太灵活的东西往往是很危险的,它会让我们的程序捉摸不定,那么怎么才能避免使用goto语句,又能消除代码冗余呢,请看do...while(0)循环:
version3

bool Execute()
{
   // 分配资源
   int *p = new int;

   bool bOk(true);
   do
   {
      // 执行并进行错误处理
      bOk = func1();
      if(!bOk) break;

      bOk = func2();
      if(!bOk) break;

      bOk = func3();
      if(!bOk) break;

      // ..........

   }while(0);

    // 释放资源
    delete p;   
    p = NULL;
    return bOk;
   
}


“漂亮!”, 看代码就行了,啥都不用说了...

背景:在内核的系统调用API实现里看到了while(0)的使用!

如何使用系统调用?

先来看一个例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include<linux/unistd.h> /*定义宏_syscall1*/
#include<time.h>     /*定义类型time_t*/
_syscall1(time_t,time,time_t *,tloc)    /*宏,展开后得到time()函数的原型*/
main()
{
        time_t the_time;
        the_time=time((time_t *)0); /*调用time系统调用*/
        printf("The time is %ld ",the_time);
}
系统调用time返回从格林尼治时间1970年1月1日0:00开始到现在的秒数。
这是最标准的系统调用的形式,宏_syscall1()展开来得到一个函数原型,稍后我会作详细解释。但事实上,如果把程序改成下面的样子,程序也可以运行得同样的结果。
#include<time.h>
main()
{
        time_t the_time;
        the_time=time((time_t *)0); /*调用time系统调用*/
        printf("The time is %ld ",the_time);
}

这是因为在time.h中实际上已经用库函数的形式实现了time这个系统调用,替我们省掉了调用_syscall1宏展开得到函数原型这一步。

大多数系统调用都在各种C语言函数库中有所实现,所以在一般情况下,我们都可以像调用普通的库函数那样调用系统调用,只在极个别的情况下,我们才有机会用到_syscall*()这几个宏。

_syscall*()是什么?

在unistd.h里定义了7个宏,分别是

1
2
3
4
5
6
7
_syscall0(type,name)
_syscall1(type,name,type1,arg1)
_syscall2(type,name,type1,arg1,type2,arg2)
_syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)
_syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)
_syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5)
_syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5,type6,arg6)

它们看起来似乎不太像宏,但其实质和
#define MAXSIZE 100
里面的MAXSIZE没有任何区别。

它们的作用是形成相应的系统调用函数原型,供我们在程序中调用。我们很容易就能发现规律,_syscall后面的数字和typeN,argN的数目一样多。事实上,_syscall后面跟的数字指明了展开后形成函数的参数的个数,让我们看一个实例,就是刚刚用过的time系统调用:

1
_syscall1(time_t,time,time_t *,tloc)

展开后的情形是这样:

1
2
3
4
5
6
7
8
9
10
11
12
time_t   time(time_t *   tloc)
{
    long __res;
    __asm__ volatile("int $0x80" : "=a" (__res) : "0" (13),"b" ((long)(tloc)));
    do {
        if ((unsigned long)(__res) >= (unsigned long)(-125)) {
            errno = -(__res);
            __res  = -1;
        }
        return (time_t) (__res);
    } while (0) ;
}

可以看出,_syscall1(time_t,time,time_t *,tloc)展开成一个名为time的函数,原参数time_t就是函数的返回类型,原参数time_t *和tloc分别构成新函数的参数。事实上,程序中用到的time函数的原型就是它。

原文地址:https://www.cnblogs.com/bonelee/p/12923701.html