常微分方程图解

%我的 tex 模版
documentclass[UTF8,a1paper,landscape]{ctexart}%UTF8 中文支持,a1paper 纸张大小,landscape 横向版面,ctexart 中文文章
usepackage{tikz}%图包
usetikzlibrary{trees}%树包

usepackage{amsmath}

usepackage{geometry}%页边距设置
geometry{top=5cm,bottom=5cm,left=5cm,right=5cm}

usepackage{fancyhdr}%页头页尾页码设置
pagestyle{fancy}
egin{document}
    	itle{常微分方程图解}
    author{dengchaohai}
    maketitle
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
ewpage%另起一页
    part{一阶常微分方程}
    section*{一阶常微分方程逻辑关系图解}
    egin{center}%居中
        egin{tikzpicture}
        [
        grow=right,
        r/.style={rectangle,draw,fill=red!20,align=center,rounded corners=.8ex},
        g/.style={rectangle,draw,fill=green!20,align=center,rounded corners=.8ex},
        b/.style={rectangle,draw,fill=blue!20,align=center,rounded corners=.8ex},
        grow via three points={one child at (4,-4) and two children at (4,-4) and (4,-8)},
        edge from parent path={(	ikzparentnode.south)|-(	ikzchildnode.west)},
        ]%属性定义
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        
ode(-1)at(0,12)[r]{解的存在唯一性\$/x-x_0/leq h$}
        child{node(g)[g]{解的延拓}}
        child{node(h)[g]{解对初值的连续可微性}}
        child[missing]{}
        child[missing]{}
        child[missing]{}
        child[missing]{};
        
ode(-2)at(10,8)[b]{解的存在空间(局部)\$|x-x_0|leq h$};
        
ode(-3)at(15,8)[b]{通解\$y=y(c,x)$};
        
ode(-4)at(20,8)[b]{定解\$y=y(x_0,y_0,x)$};
        
ode(-5)at(25,8)[b]{解的存在空间(饱和)\$(c,d)$};
        
ode(-6)at(15,0)[b]{包络};
        
ode(-7)at(20,4)[b]{解对初值的连续可微性\$y=y(x_0,y_0,x,lambda)$};    
        
ode(-8)at(40,0)[b]{奇解}
        child{node[b]{$c-$判别曲线\$Phi(c,x,y)=0,Phi'_c=0$}}
        child{node[b]{$p-$判别曲线\$F(x,y,p)=0,F'_p=0$}};
        
        draw[->](-2)--(-3);
        draw[->](-3)--(-6);
        draw[->](-4)--(-7);
        draw[->](-3)to node[above]{初值$(x_0,y_0)$}(-4);
        draw[->](-4)--(-5);        
        draw[->](-2)--(10,9)to node[above]{延拓}(25,9)--(-5);
        draw[->](-6)--(-8);
        
        
ode(0)at(0,0)[r]{一阶常微分方程\$F(x,y,y')=0$}
        child{node[g]{显式\$y'=f(x,y)$}
            child{node(a)[b]{3分式微分方程\$frac{dy}{dx}=frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}$}}
            child{node(b)[b]{7伯努利微分方程\$frac{dy}{dx}=P(x)y+Q(x)y^n$}}}        
        child[missing]{}
        child[missing]{}
        child{node[g]{隐式\$F(x,y,y')=0$}
            child{node(c)[b]{8显解$x$\$x=f(y,y')$}}
            child{node(d)[b]{9显解$y$\$y=f(x,y')$}}
            child{node(e)[b]{10不含$x$\$F(y,y')=0$}}
            child{node(f)[b]{11不含$y$\$F(x,y')=0$}}};
        
        
        
ode(1)at(15,-8)[b]{2齐次微分方程\$frac{dy}{dx}=f(frac{y}{x})$};
        
ode(2)at(20,-8)[b]{1变量分离方程\$frac{dy}{dx}=psi(x)varphi(y)$};
        
ode(3)at(25,-8)[b]{4恰当微分方程\$M(x,y)dx+N(x,y)dy=0$};
        
ode(4)at(15,-12)[b]{6非齐次线性微分方程\$frac{dy}{dx}=P(x)y+Q(x)$};
        
ode(5)at(20,-12)[b]{5齐次线性微分方程\$frac{dy}{dx}=P(x)y$};
        
        
        draw[->](a)--(1);
        draw[->](1)--(2);
        draw[->](2)--(3);
        draw[->](b)--(4);
        draw[->](4)--(5);
        draw[->](5)--(2);
        draw(-1)--(0);
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        end{tikzpicture}
    end{center}
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
    
ewpage
    section*{一阶常微分方程图解对应解法}
    egin{itemize}
        item 1.
        [
        egin{split}
        given:quadfrac{dy}{dx}=psi(x)varphi(y).\
        ifquadvarphi(y)=0\
        &Rightarrow varphi(y)=0\
        &Rightarrow y=y_0\
        ifquadvarphi(y)
e0\
        &Rightarrow frac{1}{varphi(y)}dy=psi(x)dx\
        &Rightarrow intfrac{1}{varphi(y)}dy=intpsi(x)dx+c\
        &Rightarrow Phi(c,x,y)=0\
        &Rightarrow y=y(c,x)\
        end{split}         
        ]
        item 2.
        [
        egin{split}
        given:quadfrac{dy}{dx}=f(frac{y}{x}).\
        letquad u=frac{y}{x}
        &Rightarrow y=ux\
        &Rightarrow frac{dy}{dx}=frac{du}{dx}x+u\
        &Rightarrow frac{du}{dx}x+u=f(u)\
        &Rightarrow frac{du}{dx}=frac{f(u)-u}{x}\
        &Rightarrow frac{du}{dx}=psi(u)varphi(x)\
        end{split}    
        ]
        item 3.
        [
        egin{split}
        given:quadfrac{dy}{dx}=frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}.\
        ifquad c_1=c_2=0\
        &Rightarrow frac{dy}{dx}=frac{a_1+b_1frac{y}{x}}{a_2+b_2frac{y}{x}}\
        &Rightarrow frac{dy}{dx}=f(frac{y}{x})\
        letquad u=frac{y}{x}\
        &Rightarrow frac{dy}{dx}=psi(u)\
        ifquad frac{a_1}{a_2}=frac{b_1}{b_2}=frac{c_1}{c_2}=k\        
        &Rightarrow frac{dy}{dx}=k\
        ifquad frac{a_1}{a_2}=frac{b_1}{b_2}=k
efrac{c_1}{c_2}\
        letquad u=a_1x+b_1y\
        &Rightarrow frac{du}{dx}=a_1+b_1frac{dy}{dx}=a_1+b_1frac{ku+c_1}{u+c_2}\
        &Rightarrow frac{du}{dx}=psi(u)\
        ifquad frac{a_1}{a_2}
efrac{b_1}{b_2}\
        &Rightarrow a_1x+b_1y+c_1=0,a_2x+b_2y+c_2=0\
        &Rightarrow x=x_0,y=y_0\
        letquad x=X+x_0,y=Y+y_0\
        &Rightarrow frac{dy}{dx}=frac{dY}{dX}=frac{a_1X+b_1Y}{a_2X+b_2X}=frac{a_1+b_1frac{Y}{X}}{a_2+b_2frac{Y}{X}}\
        letquad u=frac{Y}{X}\
        &Rightarrow frac{du}{dX}=psi(u)varphi(X)\        
        end{split}    
        ]
        item 4.
        [
        egin{split}
        given:quad M(x,y)dx+N(x,y)dy=0.\
        ifquad frac{frac{partial M}{partial y}-frac{partial N}{partial x}}{-M}=varphi(y)\
        &Rightarrow mu=e^{intvarphi(y)dy}\
        ifquad frac{frac{partial M}{partial y}-frac{partial N}{partial x}}{N}=psi(x)\
        &Rightarrow mu=e^{intvarphi(x)dx}\
        letquad mu Mdx+mu Ndy=0\
        &Rightarrow u=intmu Mdx+varphi(y)\
        &Rightarrow frac{du}{dy}=mu N\
        &Rightarrow varphi(y)\
        &Rightarrow u=Phi(x,y)\
        &Rightarrow Phi(x,y)=c\
        end{split}    
        ]
        item 5.
        [
        egin{split}
        given:quadfrac{dy}{dx}=P(x)y.\
        &Rightarrow y=ce^{int P(x)dx}\
        end{split}    
        ]
        item 6.
        [
        egin{split}
        given:quadfrac{dy}{dx}=P(x)y+Q(x).\
        &Rightarrow y=e^{int P(x)dx}(int Q(x)e^{-int P(x)dx}dx+c)\
        end{split}    
        ]
        item 7.
        [
        egin{split}
        given:quadfrac{dy}{dx}=P(x)y+Q(x)y^n.\
        y^{-n}\
        &Rightarrow y^{-n}frac{dy}{dx}=y^{-n}P(x)y+y^{-n}Q(x)y^n\
        &Rightarrow y^{-n}frac{dy}{dx}=P(x)y^{1-n}+Q(x)\
        letquad z=y^{1-n}\
        &Rightarrow frac{dz}{dx}=(1-n)y^{-n}frac{dy}{dx}\
        &Rightarrow frac{dz}{dx}=(1-n)P(x)z+(1-n)Q(x)\
        &Rightarrow frac{dz}{dx}=psi (x)z+varphi(x)\
        end{split}    
        ]
        item 8.
        item 9.
        [
        egin{split}
        given:quad y=f(x,y').\
        letquad p=y'\
        &Rightarrow y=f(x,p)\
        &Rightarrow frac{dy}{dx}=frac{partial f}{partial x}+frac{partial f}{partial p}frac{dp}{dx}\
        &Rightarrow p=varphi(c,x)\
        &Rightarrow x=psi(c,p)\
        &Rightarrow y=f(psi(c,p),p)\
        end{split}
        ]
        item 10.
        item 11.
        [
        egin{split}
        given:quad F(x,y')=0.\
        letquad p=y'=p(t,x)\
        &Rightarrow x=psi(t)\
        &Rightarrow p=varphi(t)\
        &Rightarrow dy=pdx=varphi(t)psi'(t)dt\
        &Rightarrow y=intvarphi(t)psi'(t)dt+c\        
        end{split}
        ]
    end{itemize}
    
    
ewpage
    part{高阶常微分方程}
    section*{高阶常微分方程逻辑关系图解}
    egin{center}%居中
        egin{tikzpicture}
        [
        grow=right,
        r/.style={rectangle,draw,fill=red!20,align=center,rounded corners=.8ex},
        g/.style={rectangle,draw,fill=green!20,align=center,rounded corners=.8ex},
        b/.style={rectangle,draw,fill=blue!20,align=center,rounded corners=.8ex},
        grow via three points={one child at (4,-2) and two children at (4,-2) and (4,-4)},
        edge from parent path={(	ikzparentnode.south)|-(	ikzchildnode.west)},
        ]%属性定义
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        
ode(0)at(0,0)[r]{高阶常微分方程}
        child[missing]{}
        child[missing]{}
        child{node(a)[g]{齐次微分方程}
            child{node[b]{常系数线性齐次微分方程}
                child{node[b]{特征根法求通解}
                    child{node[b]{单根}
                        child{node[b]{实单根\$e^{lambda_1t}$}}
                        child{node[b]{$e^{lambda t}=e^{alpha t}(cos(eta t)+sin(eta t))$\复单根\(复$=2$,单$=1Rightarrow 2	imes1$的矩阵)\$e^{lambda_1t}$\$e^{overline{lambda_1}t}$}}}
                    child[missing]{}
                    child[missing]{}
                    child{node[b]{重根}
                        child{node[b]{实$k$重根\$underbrace{e^{lambda_1t},te^{lambda_1t},dots,t^{k-1}e^{lambda_1t}}_k$}}
                        child[missing]{}
                        child{node[b]{$e^{lambda t}=e^{alpha t}(cos(eta t)+sin(eta t))$\复$k$重根\(复$=2$,单$=kRightarrow 2	imes k$的矩阵)\$underbrace{e^{lambda_1t},te^{lambda_1t},dots,t^{k-1}e^{lambda_1t}}_k$\$underbrace{e^{overline{lambda_1}t},te^{overline{lambda_1}t},dots,t^{k-1}e^{overline{lambda_1}t}}_k$}}}}}}
        child[missing]{}
        child[missing]{}
        child[missing]{}
        child[missing]{}
        child[missing]{}
        child[missing]{}
        child[missing]{}
        child[missing]{}
        child[missing]{}
        child[missing]{}
        child{node(b)[g]{非齐次微分方程}            
            child{node[b]{常系数非线性齐次微分方程}
                child{node[b]{待定系数法求特解}
                    child{node[b]{$f(t)=(b_0t^m+b_1t^{m-1}+dots+b_m)e^{lambda t}$}
                        child{node[b]{$k$是特征值$lambda$的重数,若$lambda$不是特征值,那么$k=0$\~{x}$=t^k((b_0t^m+b_1t^{m-1}+dots+b_m)e^{lambda t})$}}}
                    child[missing]{}
                    child[missing]{}
                    child{node[b]{$f(t)=((P(t)cos(eta t)+Q(t)sin(eta t))e^{alpha t}$}
                        child{node[b]{$e^{lambda t}=e^{alpha t}(cos(eta t)+sin(eta t))$\$k$是特征值$lambda$的重数,若$lambda$不是特征值,那么$k=0$\~{x}$=t^k(((P(t)cos(eta t)+Q(t)sin(eta t))e^{alpha t})$}}}}}};
        
        
ode(1)at(4,0)[g]{降阶法\$x=x(t)$}
        child{node[b]{不显含$x$,降$k$阶\$F(t,x^{(k)},x^{(k+1)},dots,x^{(n)})=0$}}
        child{node[b]{不显含$t$,降$1$阶\$F(x,x',x'',dots,x^{(n)})=0$}};
        draw[->](0)--(1);    
        draw[->,green](a)to node[right]{常数变易法$cRightarrow c(x)$}(b);        
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        end{tikzpicture}
    end{center}
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
ewpage
    section*{高阶常微分方程图解对应解法}
    egin{itemize}
        item 1.降$1$阶
        [
        egin{split}
        givenquad F(x,x',x'',dots,x^{(n)})=0.\
        letquad y=x'\
        &Rightarrow x''=frac{dy}{dt}=frac{dy}{dx}frac{dx}{dt}=y'frac{dy}{dx}\
        &Rightarrow F(x,y,y'frac{dy}{dx},dots,cdotsfrac{dy}{dx})=0\
        &Rightarrow y=y(t,c_1,c_2,dots,c_{n-1})\
        &Rightarrow int ydx=int x'dx\
        &Rightarrow x\            
        end{split}
        ]
        item 2.降$k$阶
        [
        egin{split}
        givenquad F(t,x^{(k)},x^{(k+1)},dots,x^{(n)})=0.\
        letquad y=x^{(k)}\
        &Rightarrow F(t,y,y',dots,y^{(n-k)})=0\
        &Rightarrow y=y(t,c_1,c_2,dots,c_{n-k})\
        &Rightarrow int ydx=int x^{(k)}dx\
        &Rightarrow x=underbrace{idotsint}_k x^{(k)}dx\            
        end{split}
        ]
    end{itemize}    
    
ewpage
    part{常微分方程组}
    section*{常微分方程组逻辑关系图解}
    egin{center}%居中
        egin{tikzpicture}
        [
        grow=right,
        r/.style={rectangle,draw,fill=red!20,align=center,rounded corners=.8ex},
        g/.style={rectangle,draw,fill=green!20,align=center,rounded corners=.8ex},
        b/.style={rectangle,draw,fill=blue!20,align=center,rounded corners=.8ex},
        grow via three points={one child at (4,-2) and two children at (4,-2) and (4,-4)},
        edge from parent path={(	ikzparentnode.south)|-(	ikzchildnode.west)},
        ]%属性定义
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        123
        
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        end{tikzpicture}
    end{center}
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
end{document}
原文地址:https://www.cnblogs.com/blog-3123958139/p/5685360.html