java-信息安全(八)-密钥交换/协商机制、迪菲-赫尔曼(DH)密钥交换

一、概述

  密钥交换(密钥协商)算法及其原理

  即使有攻击者在偷窥你与服务器的网络传输,客户端(client)依然可以利用“密钥协商机制”与服务器端(server)协商出一个用来加密应用层数据的密钥(也称“会话密钥”)。

1.1、密钥交换/协商机制的几种类型

1、非对称加密算法【如RSA】

  拿到公钥的一方先生成随机的会话密钥,然后利用公钥加密它;再把加密结果发给对方,对方用私钥解密;于是双方都得到了会话密钥。

2、密钥交换算法【DH】

3、依靠通讯双方事先已经共享的“秘密”【PSK 和 SR

  既然双方已经有共享的秘密(这个“秘密”可能已经是一个密钥,也可能只是某个密码/password),只需要根据某种生成算法,就可以让双方产生相同的密钥(并且密钥长度可以任意指定)

二、DH(Diffie–Hellman key exchange,迪菲-赫尔曼密钥交换)

  是一种安全协议,,一种确保共享KEY安全穿越不安全网络的方法,它是OAKLEY的一个组成部分。

  这个机制的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥。然后可以用这个密钥进行加密和解密。但是注意,这个密钥交换协议/算法只能用于密钥的交换,而不能进行消息的加密和解密。双方确定要用的密钥后,要使用其他对称密钥操作加密算法实际加密和解密消息。

  Oakley算法是对Diffie-Hellman密钥交换算法的优化,它保留了后者的优点,同时克服了其弱点. Oakley算法具有五个重要特征: 它采用称为cookie程序的机制来对抗阻塞攻击. 它使得双方能够协商一个全局参数集合. 它使用了现时来保证抵抗重演攻击. 它能够交换Diffie-Hellman公开密钥. 它对Diffie-Hellman交换进行鉴别以对抗中间人的攻击.

Oakley可以使用三个不同的鉴别方法:

1、数字签名:通过签署一个相互可以获得的散列代码来对交换进行鉴别;每一方都使用自己的私钥对散列代码加密。散列代码是在一些重要参数上生成的,如用户ID和现时。

2、公开密钥加密:通过使用发送者的私钥对诸如ID和现时等参数进行加密来鉴别交换。

3、对称密钥加密:通过使用某种共享密钥对交换参数进行对称加密,实现交换的鉴别。

DH算法具有两个吸引力的特征:

  1. 仅当需要时才生成密钥,减小了将密钥存储很长一段时间而致使遭受攻击的机会;
  2. 除对全局参数的约定外,密钥交换不需要事先存在的基础结构;

然而,该技术也存在许多不足:

  1. 没有提供双方身份的任何信息;
  2. 计算密集性,因此容易遭受阻塞性攻击,即对手请求大量的密钥。受攻击者花费了相对多的计算资源来求解无用的幂系数而不是在做真正的工作;
  3. 没办法防止重演攻击;
  4. 容易遭受中间人的攻击。第三方C在和A通信时扮演B;和B通信时扮演A。A和B都与C协商了一个密钥,然后C就可以监听和传递通信量。中间人的攻击按如下进行:
  • B在给A的报文中发送他的公开密钥YB
  • C截获并解析该报文。C将B的公钥保存下来并给A发送报文,该报文具有B的用户ID但使用C的公钥YC,但仍按照好像是来自B的样子被发送出去。A收到C的报文后,将YC和B的用户ID存储在一块。类似地,C使用YC向B发送好像来自A的报文。
  • B基于私钥XB和YC计算共享密钥K1,A基于私钥XA和YC计算共享密钥K2,C使用私钥XC和YB计算K1,并使用XC和YA计算K2
  • 从现在开始,C就可以转发A发给B的报文或转发B发给A的报文,在途中根据需要修改它们的密文。使得A和B都不知道他们在和C共享通信。

2.1、流程分析

  1.甲方构建密钥对儿,将公钥公布给乙方,将私钥保留;双方约定数据加密算法;乙方通过甲方公钥构建密钥对儿,将公钥公布给甲方,将私钥保留。 

  2.甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给乙方加密后的数据;乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。

 

  3.乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给甲方加密后的数据;甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。 

2.2、代码实现 

  代码地址:https://github.com/bjlhx15/algorithm-sign.git

1、使用jdk实现时计算密钥,出错“java.security.NoSuchAlgorithmException: Unsupported secret key algorithm: DES”

  由于JDK版本不同,在Java 8 update 161版本以后就会出现此问题,根本原因还是DH密钥长度至少为512位,而DES算法密钥没有这么长,密钥长度不一致引起的。

  解决方法:配置JVM的系统变量:-Djdk.crypto.KeyAgreement.legacyKDF=true

2、支持的对称加密算法

    public static final String DES = "DES";
    public static final String AES = "AES";
    public static final String DESede = "DESede";
    public static final String Blowfish = "Blowfish";

  具体使用还需 选择合适的填充方式  

3、代码示例

  参看3.6提供组合实现以下测试代码

  changekey001DH【jdk8、bc】

  changekey002ECDH【bc】

2.3、数学原理

从概念上讲:DH 依赖的是:求解“离散对数问题”的复杂性。具体的算法如下:
  通讯双方(张三、李四)需要先约定好算法参数(algorithm parameters):一个素数 p 作为模数,一个素数 g 作为基数(g 也称为“生成元”)。这两个算法参数是可以对外公开滴。
  对于张三而言,需要先想好一个秘密的自然数 a 作为私钥(不能公开),然后计算 A = ga mod p 作为自己的公钥(可以公开)。
  对李四而言也类似,先想好一个秘密的自然数 b 作为私钥(不能公开),然后计算 B = gb mod p 作为自己的公钥(可以公开)。
  张三和李四互相交换各自的公钥。
  然后张三计算出 k = Ba mod p,李四计算出 k = Ab mod p

  该算法至少确保了如下几点:
1. 张三和李四分别计算出来的 k 必定是一致的
2. 张三和李四都无法根据已知的数来推算出对方的私钥(张三无法推算出 b,李四无法推算出 a)
3. 对于一个旁观者(偷窥者),虽然能看到 p,g,A,B,但是无法推算出 a 和 b(就是说,旁观者无法推算出双方的私钥),自然也无法推算出 k

示例

假设约定的算法参数:模数是 97,基数是 3

张三用的私钥是 6,李四用的私钥是 21,用 python 代码演示如下(python 语言用两个连续星号表示“幂运算”,用百分号表示“取模运算”):

p = 97
g = 3

a = 6
b = 21

A = (g**a) % p
B = (g**b) % p

print((B**a) % p) # 47
print((A**b) % p) # 47

最后打印出来的两个 47 就是双方都计算出了【相同的】结果(这个数值可以用作之后的“会话密钥”)

  上面因为是举例,用的数字都比较小。在实战中需要注意如下几点,以降低被攻击的风险。

1. p 必须是质数且足够大(至少300位)
2. a,b 也要足够大(至少100位),且必须是随机生成。
3. g 必须是质数,【不】需要很大,比如 2 或 3 或 5 都可以。g 如果太大并【不能】显著提升安全性,反而会影响性能。

三、秘钥协商说明

3.1、基于 RSA 的密钥协商

◇概述

  早期的 SSLv2 只支持一种密钥协商机制。
  RSA 是一种【非】对称加密算法。加密和解密用使用【不同的】密钥。并且“非对称加密算法”既可以用来做“加密/解密”,还可以用来做“数字签名”。

◇密钥协商的步骤

  1. 客户端连上服务端
  2. 服务端发送 CA 证书给客户端
  3. 客户端验证该证书的可靠性
  4. 客户端从 CA 证书中取出公钥
  5. 客户端生成一个随机密钥 k,并用这个公钥加密得到 k'
  6. 客户端把 k' 发送给服务端
  7. 服务端收到 k' 后用自己的私钥解密得到 k
  8. 此时双方都得到了密钥 k,协商完成。

◇如何防范偷窥(嗅探)

  攻击方式1、攻击者虽然可以监视网络流量并拿到公钥,但是【无法】通过公钥推算出私钥(这点由 RSA 算法保证)

  攻击方式2、攻击者虽然可以监视网络流量并拿到 k',但是攻击者没有私钥,【无法解密】 k',因此也就无法得到 k

◇如何防范篡改(假冒身份)

  攻击方式1、如果攻击者在第2步篡改数据,伪造了证书,那么客户端在第3步会发现(这点由证书体系保证)

  攻击方式2、如果攻击者在第6步篡改数据,伪造了k',那么服务端收到假的k'之后,解密会失败(这点由 RSA 算法保证)。服务端就知道被攻击了。

3.2、基于 DH 的密钥协商

◇概述

  DH 算法又称“Diffie–Hellman 算法”。这是两位数学牛人的名称,他们创立了这个算法。该算法用来实现【安全的】“密钥交换”。它可以做到——“通讯双方在完全没有对方任何预先信息的条件下通过不安全信道创建起一个密钥”。通俗地说,可以归结为两个优点:

    1. 通讯双方事先【不】需要有共享的秘密。

    2. 用该算法协商密码,即使协商过程中被别人全程偷窥(比如“网络嗅探”),偷窥者也【无法】知道协商得出的密钥是啥。

  但是 DH 算法本身也有缺点——它不支持认证。也就是说:它虽然可以对抗“偷窥”,却无法对抗“篡改”,自然也就无法对抗“中间人攻击/MITM”。

  为了避免遭遇 MITM 攻击,DH 需要与其它签名算法(比如 RSA、DSA、ECDSA)配合——靠签名算法帮忙来进行身份认证。当 DH 与 RSA 配合使用,称之为“DH-RSA”,与 DSA 配合则称为“DH-DSA”,以此类推

  反之,如果 DH 【没有】配合某种签名算法,则称为“DH-ANON”(ANON 是洋文“匿名”的简写)。此时会遭遇“中间人攻击/MITM”。

◇密钥协商的步骤

  1. 客户端先连上服务端
  2. 服务端生成一个随机数 s 作为自己的私钥,然后根据算法参数计算出公钥 S(算法参数通常是固定的)
  3. 服务端使用某种签名算法把“算法参数(模数p,基数g)和服务端公钥S”作为一个整体进行签名
  4. 服务端把“算法参数(模数p,基数g)、服务端公钥S、签名”发送给客户端
  5. 客户端收到后验证签名是否有效
  6. 客户端生成一个随机数 c 作为自己的私钥,然后根据算法参数计算出公钥 C
  7. 客户端把 C 发送给服务端
  8. 客户端和服务端(根据上述 DH 算法)各自计算出 k 作为会话密钥

◇如何防范偷窥(嗅探)

  嗅探者可以通过监视网络传输,得到算法参数(模数p,基数g)以及双方的公钥,但是【无法】推算出双方的私钥,也【无法】推算出会话密钥(这是由 DH 算法在数学上保证的)

◇如何防范篡改(假冒身份)

  攻击方式1、攻击者可以第4步篡改数据(修改算法参数或服务端公钥)。但因为这些信息已经进行过数字签名。篡改之后会被客户端发现。

  攻击方式2、攻击者可以在第7步篡改客户端公钥。这步没有签名,服务端收到数据后不会发现被篡改。但是,攻击者篡改之后会导致“服务端与客户端生成的会话密钥【不一致】”。在后续的通讯步骤中会发现这点,并导致通讯终止。

3.3、DH 的变种

◇基于“椭圆曲线”的 ECDH

  DH 算法有一个变种,称之为 ECDH(全称是“Elliptic Curve Diffie-Hellman”)。维基条目在“这里

  它与 DH 类似,差别在于:
    DH 依赖的是——求解“离散对数问题”的困难。
    ECDH 依赖的是——求解“椭圆曲线离散对数问题”的困难。


  ECDH 的数学原理比 DH 更复杂。
  ECDH 跟 DH 一样,也是【无认证】的。同样需要跟其它签名算法(比如 RSADSAECDSA)配合。

◇对 DH 和 ECDH 进行“临时密钥”的改良——DHE 和 ECDHE

  刚才介绍的 DH 和 ECDH,其密钥是持久的(静态的)。也就是说,通讯双方生成各自的密钥之后,就长时间用下去。这么干当然比较省事儿(节约性能),但是存在某种安全隐患——无法做到“前向保密”(洋文是“forward secrecy”)。
  为了做到“前向保密”,采用“临时密钥”(洋文是“ephemeral key”)的方式对 DH 和 ECDH 进行改良。于是得到两种新的算法——DHE 和 ECDHE。(这两种新算法的名称,就是在原有名称后面加上字母 E 表示 ephemeral)。其实算法还是一样的,只是对每个会话都要重新协商一次密钥,且密钥用完就丢弃。

3.4、基于 PSK 的密钥协商

◇概述

  PSK 是“Pre-Shared Key”的缩写。顾名思义,就是【预先】让通讯双方共享一些密钥(通常是【对称加密】的密钥)。所谓的【预先】,就是说,这些密钥在 TLS 连接尚未建立之前,就已经部署在通讯双方的系统内了。

  这种算法用的不多,它的好处是:
    1. 不需要依赖公钥体系,不需要部属 CA 证书。
    2. 不需要涉及非对称加密,TLS 协议握手(初始化)时的性能好于前述的 RSA 和 DH。
  更多介绍可以参见维基百科,链接在“这里”。

◇密钥协商的步骤

  在通讯【之前】,通讯双方已经预先部署了若干个共享的密钥。
  为了标识多个密钥,给每一个密钥定义一个唯一的 ID
  协商的过程很简单:客户端把自己选好的密钥的 ID 告诉服务端。
  如果服务端在自己的密钥池子中找到这个 ID,就用对应的密钥与客户端通讯;否则就报错并中断连接。

◇如何防范偷窥(嗅探)

  使用这种算法,在协商密钥的过程中交换的是密钥的标识(ID)而【不是】密钥本身。
  就算攻击者监视了全过程,也无法知晓密钥啥。

◇如何防范篡改(假冒身份)

  PSK 可以单独使用,也可以搭配签名算法一起使用。
  对于单独使用
  如果攻击者篡改了协商过程中传送的密钥 ID,要么服务端发现 ID 无效(协商失败),要么服务端得到的 ID 与客户端不一致,在后续的通讯步骤中也会发现,并导致通讯终止。
  对于搭配签名算法
  如果攻击者篡改了协商过程中传送的密钥 ID,验证签名会失败

◇补充说明

  PSK 与 RSA 具有某种相似性——既可以用来搞“密钥协商”,也可以用来搞“身份认证”。
  所以,PSK 可以跟 DH(及其变种)进行组合。例如:DHE-PSK、ECDHE-PSK
  关于 PSK 的更多细节,可以参见 RFC4279

3.5、基于 SRP 的密钥协商

◇概述

  SRP 是“Secure Remote Password”的缩写。这个算法有点类似于刚才提到的 PSK——只不过 client/server 双方共享的是比较人性化的密码(password)而不是密钥(key)。该算法采用了一些机制(盐/salt、随机数)来防范“嗅探/sniffer”或“字典猜解攻击”或“重放攻击”。
  这个算法应该用得很少——OpenSSL 直到2012年才开始支持该算法。看 RFC2945 的协议描述。

◇密钥协商的步骤

  (由于 SRP 用的不多,略)

3.6、组合表

算法组合密钥交换身份认证是否会遭遇
中间人攻击
是否具备
前向保密
SSL 2.0SSL 3.0TLS 1.0TLS 1.1TLS 1.2TLS 1.3
(草案)
RSA RSA RSA
DH-RSA DH RSA
DH-DSA DH DSA
DHE-RSA DHE RSA
DHE-DSA DHE DSA
ECDH-RSA ECDH RSA
ECDH-ECDSA ECDH ECDSA
ECDHE-RSA DHE RSA
ECDHE-ECDSA DHE ECDSA
PSK PSK PSK
PSK-RSA PSK RSA
DHE-PSK DHE PSK
ECDHE-PSK DHE PSK
SRP SRP SRP
SRP-RSA SRP RSA
SRP-DSA SRP DSA
DH-ANON DH
ECDH-ANON ECDH
 
 
原文地址:https://www.cnblogs.com/bjlhx/p/6563926.html