进程,线程,协程

线程(thread)

线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的就是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并执行不同的任务。

threading

用于提供线程相关的操作。

#!/usr/bin/env python3

import threading
import time

def show(arg):
    time.sleep(1)
    print('thread'+str(arg))

for i in range(10):
    t = threading.Thread(target=show, args=(i,))
    t.start()

print('main thread stop')

上述代码创建了10个前台线程,然后控制器交给了CPU,CPU根据指定算法进行调度,分片执行指令

其他方法:

  • start               线程准备就绪,等待CPU调度
  • setName        为线程设置名称
  • getName        获取线程名称
  • setDaemon    设置为后台线程或前台线程(默认)
        • 如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止
        • 如果是前台线程,主线程执行过程中,前台线程也进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
  • join            逐个执行每个线程,执行完毕后继续往下执行,该方法使的多线程变得无意义
  • run            线程被CPU调度后执行Thread类对象的run方法

 

调用的方法:

直接调用

import threading
import time

def sayhi(num):    # 定义每个线程要运行的函数
    print("running on number:%s" %num)
    time.sleep(3)

if __name__ == "__main__":
    t_list = []
    for i in range(10):
        t = threading.Thread(target=sayhi,args=[i,])
        t.start()
        t_list.append(t)
    for i in t_list:
        i.join()        # 阻断,等上面都执行完成后再执行后面的程序

    print("---main---")

 

继承调用:

import threading
import time
 
 
class MyThread(threading.Thread):
    def __init__(self,num):
        threading.Thread.__init__(self)
        self.num = num
 
    def run(self):#定义每个线程要运行的函数
 
        print("running on number:%s" %self.num)
 
        time.sleep(3)
 
if __name__ == '__main__':
 
    t1 = MyThread(1)
    t2 = MyThread(2)
    t1.start()
    t2.start()

 

线程锁(互斥锁Mutex)

一个进程下可以启动多个线程,多个线程共享父进程的内存空间,也就意味着每个线程可以访问同一份数据,这样就会出现2个线程同时要修改同一份数据。(3.x版本中不会出现这种情况)

未加锁的版本:

import time
import threading
 
def addNum():
    global num #在每个线程中都获取这个全局变量
    print('--get num:',num )
    time.sleep(1)
    num  -=1 #对此公共变量进行-1操作
 
num = 100  #设定一个共享变量
thread_list = []
for i in range(100):
    t = threading.Thread(target=addNum)
    t.start()
    thread_list.append(t)
 
for t in thread_list: #等待所有线程执行完毕
    t.join()
 
print('final num:', num )

加锁版本:

import time
import threading
 
def addNum():
    global num #在每个线程中都获取这个全局变量
    print('--get num:',num )
    time.sleep(1)
    lock.acquire() #修改数据前加锁
    num  -=1 #对此公共变量进行-1操作
    lock.release() #修改后释放
 
num = 100  #设定一个共享变量
thread_list = []
lock = threading.Lock() #生成全局锁
for i in range(100):
    t = threading.Thread(target=addNum)
    t.start()
    thread_list.append(t)
 
for t in thread_list: #等待所有线程执行完毕
    t.join()
 
print('final num:', num )

 

RLock(递归锁)

就是会有多层锁。

#!/usr/bin/env python3
import threading

def run1():
    print("grab the first part data")
    lock.acquire()
    global num
    num +=1
    lock.release()
    return num
def run2():
    print("grab the second part data")
    lock.acquire()
    global  num2
    num2+=1
    lock.release()
    return num2
def run3():
    lock.acquire()
    res = run1()
    print('--------between run1 and run2-----')
    res2 = run2()
    lock.release()
    print(res,res2)

if __name__ == '__main__':

    num,num2 = 0,0
    lock = threading.RLock()        #$ Rlock递归锁
    for i in range(10):
        t = threading.Thread(target=run3)
        t.start()

while threading.active_count() != 1:
    print(threading.active_count())
else:
    print('----all threads done---')
    print(num,num2)

 

Semaphore(信号量)

互斥锁同时只允许一个线程更改数据,而Semaphore是同时允许一定量的线程更改数据,比如去理发店,有3个理发师,最多允许3个人理发,后面的人只能排队等待。

import threading
import time

def run(n):
    semaphore.acquire()
    time.sleep(1)
    print("run the thread: %s
" %n)
    semaphore.release()

if __name__ == '__main__':

    num= 0
    semaphore  = threading.BoundedSemaphore(5) #最多允许5个线程同时运行
    for i in range(20):
        t = threading.Thread(target=run,args=(i,))
        t.start()

while threading.active_count() != 1:
    pass #print threading.active_count()
else:
    print('----all threads done---')
    print(num)

 

Events

python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set , wait , clear

事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为False ,那么程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么 event.wait 方法便不阻塞

  • clear:将“Flag”设置为False
  • set:将“Flag”设置为True

通过event来实现两个或多个线程间的交互,下面是一个红绿灯的例子。

import threading
import time
import random
def light():
    if not event.isSet():
        event.set() #wait就不阻塞 #绿灯状态
    count = 0
    while True:
        if count < 10:
            print('33[42;1m--green light on---33[0m')
        elif count <13:
            print('33[43;1m--yellow light on---33[0m')
        elif count <20:
            if event.isSet():
                event.clear()
            print('33[41;1m--red light on---33[0m')
        else:
            count = 0
            event.set() #打开绿灯
        time.sleep(1)
        count +=1

def car(n): #no bug version
    while 1:
        time.sleep(1)
        if  event.isSet(): #绿灯
            print("car [%s] is running.." % n)
        else:
            print("car [%s] is waiting for the red light.." %n)
            event.wait()


def car2(n):
    while 1:
        time.sleep(random.randrange(10))
        if  event.isSet(): #绿灯
            print("car [%s] is running.." % n)
        else:
            print("car [%s] is waiting for the red light.." %n)

if __name__ == '__main__':
    event = threading.Event()
    Light = threading.Thread(target=light)
    Light.start()
    for i in range(3):
        t = threading.Thread(target=car,args=(i,))
        t.start()

 

生产着消费着模型

主要是基于单向队列queue,单向队列的遵循的是先进先出的原则

下面模拟一个吃包子的场景

import time,random
import queue,threading
q = queue.Queue()
def Producer(name):
  count = 0
  while count <20:
    time.sleep(random.randrange(3))
    q.put(count)
    print('Producer %s has produced %s baozi..' %(name, count))
    count +=1
def Consumer(name):
  count = 0
  while count <20:
    time.sleep(random.randrange(4))
    if not q.empty():
        data = q.get()
        print(data)
        print('33[32;1mConsumer %s has eat %s baozi...33[0m' %(name, data))
    else:
        print("-----no baozi anymore----")
    count +=1
p1 = threading.Thread(target=Producer, args=('A',))
c1 = threading.Thread(target=Consumer, args=('B',))
p1.start()
c1.start()

 

进程

多进程multiproceessing

from multiprocessing import Process
import os
 
def info(title):
    print(title)
    print('module name:', __name__)
    print('parent process:', os.getppid())    #$ 父进程ID
    print('process id:', os.getpid())    #$ 进程ID
    print("

")
 
def f(name):
    info('33[31;1mfunction f33[0m')
    print('hello', name)
 
if __name__ == '__main__':
    info('33[32;1mmain process line33[0m')
    p = Process(target=f, args=('bob',))
    p.start()
    p.join()

 

进程间通讯

不同进程间内存是不共享的,可以使用以下方法进行进程间的数据交换

Queues

使用方法和threading里的queue差不多

from multiprocessing import Process, Queue
 
def f(q):
    q.put([42, None, 'hello'])
 
if __name__ == '__main__':
    q = Queue()
    p = Process(target=f, args=(q,))
    p.start()
    print(q.get())    # prints "[42, None, 'hello']"
    p.join()

 

Pipes

管道,双向的

from multiprocessing import Process, Pipe
 
def f(conn):
    conn.send([42, None, 'hello'])
    conn.close()
 
if __name__ == '__main__':
    parent_conn, child_conn = Pipe()
    p = Process(target=f, args=(child_conn,))
    p.start()
    print(parent_conn.recv())   # prints "[42, None, 'hello']"
    p.join()

 

Managers

from multiprocessing import Process, Manager

def f(d, l,n):
    d[n] =n
    d['2'] = 2
    d[0.25] = None
    l.append(n)
    print(l)

if __name__ == '__main__':
    with Manager() as manager:
        d = manager.dict()
        l = manager.list(range(5))
        p_list = []
        for i in range(10):
            p = Process(target=f, args=(d, l,i))
            p.start()
            p_list.append(p)
        for res in p_list:
            res.join()
        print(d)
        print(l)

 

进程同步

from multiprocessing import Process, Lock
 
def f(l, i):
    l.acquire()
    try:
        print('hello world', i)
    finally:
        l.release()
 
if __name__ == '__main__':
    lock = Lock()
 
    for num in range(10):
        Process(target=f, args=(lock, num)).start()

 

进程池

进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进程,那么程序就会等待,直到进程池中有可用进程为止。

进程池中有两个方法:

  • apply
  • apply_async
from  multiprocessing import Process,Pool
import time
 
def Foo(i):
    time.sleep(2)
    return i+100
 
def Bar(arg):
    print('-->exec done:',arg)
 
pool = Pool(5)
 
for i in range(10):
    pool.apply_async(func=Foo, args=(i,),callback=Bar)    #$ 异步
    #pool.apply(func=Foo, args=(i,))
 
print('end')
pool.close()
pool.join()#进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。

 

协程

又称微线程,纤程。协程是一种用户态的轻量级线程。

协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复之前保存的寄存器上下文和栈。因此:协程能保留上一次调用时的状态(即所有局部状态的一个特定组合)。每次协程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。

 

协程的好处:

  • 无需线程上下文切换的开销
  • 无需原子操作锁及同步的开销
  • 方便切换控制流,简化编程模型
  • 高并发+高扩展+低成本

缺点:

  • 无法利用多核资源:协程本质是单线程,它不能同时将单个CPU的多个核用上,协程需要和进程配合才能运行在多CPU上。
  • 进程阻塞操作会阻塞整个程序

Greenlet
from greenlet import greenlet
  
  
def test1():
    print(12)
    gr2.switch()
    print(34)
    gr2.switch()
  
  
def test2():
    print(56)
    gr1.switch()
    print(78)
  
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()    #切换

 

Gevent

gevent是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet,它是以C扩展模板形式接入Pyhton的轻量级协程。Gentnet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

import gevent
 
def foo():
    print('Running in foo')
    gevent.sleep(0)
    print('Explicit context switch to foo again')
 
def bar():
    print('Explicit context to bar')
    gevent.sleep(0)
    print('Implicit context switch back to bar')
 
gevent.joinall([
    gevent.spawn(foo),        #相互切换
    gevent.spawn(bar),
])

 

通过gevent实现单线程下的多socket并发

服务器端:

import sys
import socket
import time
import gevent
 
from gevent import socket,monkey
monkey.patch_all()
def server(port):
    s = socket.socket()
    s.bind(('0.0.0.0', port))
    s.listen(500)
    while True:
        cli, addr = s.accept()
        gevent.spawn(handle_request, cli)
def handle_request(s):
    try:
        while True:
            data = s.recv(1024)
            print("recv:", data)
            s.send(data)
            if not data:
                s.shutdown(socket.SHUT_WR)
 
    except Exception as  ex:
        print(ex)
    finally:
 
        s.close()
if __name__ == '__main__':
    server(8001)

 

客户端:

import socket
 
HOST = 'localhost'    # The remote host
PORT = 8001           # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
while True:
    msg = bytes(input(">>:"),encoding="utf8")
    s.sendall(msg)
    data = s.recv(1024)
    #print(data)
 
    print('Received', repr(data))
s.close()
原文地址:https://www.cnblogs.com/binges/p/5263902.html