编译器实践一 之 加法栈式计算机

以下是一个简单的小型加法栈式计算机


#include <stdio.h>
#include <stdlib.h>


///////////////////////////////////////////////
// Data structures for the Sum language.
enum Exp_Kind_t {EXP_INT, EXP_SUM};
struct Exp_t
{
  enum Exp_Kind_t kind;
};

struct Exp_Int
{
  enum Exp_Kind_t kind;
  int i;
};

struct Exp_Sum
{
  enum Exp_Kind_t kind;
  struct Exp_t *left;
  struct Exp_t *right;
};

// "constructors"
struct Exp_t *Exp_Int_new (int i)
{
  struct Exp_Int *p = (Exp_Int *)malloc (sizeof(Exp_Int));
  p->kind = EXP_INT;
  p->i = i;
  return (struct Exp_t *)p;
}

struct Exp_t *Exp_Sum_new (struct Exp_t *left, struct Exp_t *right)
{
  struct Exp_Sum *p = (Exp_Sum *) malloc (sizeof(Exp_Sum));
  p->kind = EXP_SUM;
  p->left = left;
  p->right = right;
  return (struct Exp_t *)p;
}

// "printer"
void Exp_print (struct Exp_t *exp)
{
  switch (exp->kind){
  case EXP_INT:{
    struct Exp_Int *p = (struct Exp_Int *)exp;
    printf ("%d", p->i);
    break;
  }
  case EXP_SUM:{
    struct Exp_Sum *p = (struct Exp_Sum *)exp;
    Exp_print (p->left);
    printf ("+");
    Exp_print (p->right);
    break;
  }
  default:
    break;
  }
}

//////////////////////////////////////////////
// Data structures for the Stack language.
enum Stack_Kind_t {STACK_ADD, STACK_PUSH};
struct Stack_t
{
  enum Stack_Kind_t kind;
};

struct Stack_Add
{
  enum Stack_Kind_t kind;
};

struct Stack_Push
{
  enum Stack_Kind_t kind;
  int i;
};

// "constructors"
struct Stack_t *Stack_Add_new ()
{
  struct Stack_Add *p = (Stack_Add *)malloc (sizeof(Stack_Add));
  p->kind = STACK_ADD;
  return (struct Stack_t *)p;
}

struct Stack_t *Stack_Push_new (int i)
{
  struct Stack_Push *p = (Stack_Push *)malloc (sizeof(Stack_Push));
  p->kind = STACK_PUSH;
  p->i = i;
  return (struct Stack_t *)p;
}

/// instruction list
struct List_t
{
  struct Stack_t *instr;
  struct List_t *next;
};

struct List_t *List_new (struct Stack_t *instr, struct List_t *next)
{
  struct List_t *p = (List_t *)malloc (sizeof (List_t));
  p->instr = instr;
  p->next = next;
  return p;
}

// "printer"
void List_reverse_print (struct List_t *list)
{
	if(list == NULL)
		return ;
	List_reverse_print(list->next) ;
	if(list->instr->kind == STACK_PUSH)
	{
		
		printf("PUSH %d
",((Stack_Push *)(list->instr))->i) ;
	}
	else
	{
		puts("ADD") ;
	}
}

//////////////////////////////////////////////////
// a compiler from Sum to Stack
struct List_t *all = 0;

void emit (struct Stack_t *instr)
{
  all = List_new (instr, all);
}

void compile (struct Exp_t *exp)
{
  switch (exp->kind){
  case EXP_INT:{
    struct Exp_Int *p = (struct Exp_Int *)exp;
    emit (Stack_Push_new (p->i));
    break;
  }
  case EXP_SUM:{
//    TODO();
	Exp_Sum * t = (Exp_Sum *)exp ;
	compile(t->left) ;
	compile(t->right) ;
	emit(Stack_Add_new()) ;
    break;
  }
  default:
    break;
  }
}

//////////////////////////////////////////////////
// program entry
int main()
{
  printf("Compile starting
");
  // build an expression tree:
  //            +
  //           / 
  //          +   4
  //         / 
  //        2   3
  struct Exp_t *exp = Exp_Sum_new (Exp_Sum_new(Exp_Int_new (2)
                                               , Exp_Int_new (3))
                                   , Exp_Int_new (4));    //Exp_Sum_new(Exp_Int_new(4),NULL)  ;
  // print out this tree:
  printf ("the expression is:
");
  Exp_Sum *p = (Exp_Sum *) exp ;
  if(p->left == NULL)
  {
  	printf("%d
",((Exp_Int *)(p->right))->i) ;
  	printf("PUSH %d
",((Exp_Int *)(p->right))->i) ;
  }
  else if(p->right == NULL)
  {
  	printf("%d
",((Exp_Int *)(p->left))->i) ;
  	printf("PUSH %d
",((Exp_Int *)(p->left))->i) ;
  }
  else
  {
		Exp_print (exp);
		// compile this tree to Stack machine instructions
		puts("") ;
		compile (exp);
		// print out the generated Stack instructons:
		List_reverse_print (all);
  }
  
  
  printf("
Compile finished
");
  return 0;
}


原文地址:https://www.cnblogs.com/bhlsheji/p/5313979.html