CS231n assignment1 Q1 KNN

说来惭愧,这应该是很早以前就完成的任务了,但第一次做非常不认真,这次重刷一遍,记录如下。
knn还是很熟悉的,毕竟本科毕设就用过,但用numpy实现还是有些难度的。

knn部分

import numpy as np

class KNearestNeighbor(object):
  """ a kNN classifier with L2 distance """

  def __init__(self):
    pass

  def train(self, X, y):
    """
    Train the classifier. For k-nearest neighbors this is just 
    memorizing the training data.

    Inputs:
    - X: A numpy array of shape (num_train, D) containing the training data
      consisting of num_train samples each of dimension D.
    - y: A numpy array of shape (N,) containing the training labels, where
         y[i] is the label for X[i].
    """
    self.X_train = X
    self.y_train = y
    
  def predict(self, X, k=1, num_loops=0):
    """
    Predict labels for test data using this classifier.

    Inputs:
    - X: A numpy array of shape (num_test, D) containing test data consisting
         of num_test samples each of dimension D.
    - k: The number of nearest neighbors that vote for the predicted labels.
    - num_loops: Determines which implementation to use to compute distances
      between training points and testing points.

    Returns:
    - y: A numpy array of shape (num_test,) containing predicted labels for the
      test data, where y[i] is the predicted label for the test point X[i].  
    """
    if num_loops == 0:
      dists = self.compute_distances_no_loops(X)
    elif num_loops == 1:
      dists = self.compute_distances_one_loop(X)
    elif num_loops == 2:
      dists = self.compute_distances_two_loops(X)
    else:
      raise ValueError('Invalid value %d for num_loops' % num_loops)

    return self.predict_labels(dists, k=k)

  def compute_distances_two_loops(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a nested loop over both the training data and the 
    test data.

    Inputs:
    - X: A numpy array of shape (num_test, D) containing test data.

    Returns:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      is the Euclidean distance between the ith test point and the jth training
      point.
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in range(num_test):
      for j in range(num_train):
        #####################################################################
        # TODO:                                                             #
        # Compute the l2 distance between the ith test point and the jth    #
        # training point, and store the result in dists[i, j]. You should   #
        # not use a loop over dimension.                                    #
        #####################################################################
        dists[i][j] = np.sqrt(np.sum(np.square(X[i,:] - self.X_train[j,:])))
        # dists[i,j] 中保存的是第i个测试点和第j个训练点之间的距离。
        # X(500*3072) 500是测试集的大小,3072表示每一张照片是3072维的向量
        # dists 500*5000 5000为训练集的大小
        #####################################################################
        #                       END OF YOUR CODE                            #
        #####################################################################
    return dists

  def compute_distances_one_loop(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a single loop over the test data.

    Input / Output: Same as compute_distances_two_loops
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in range(num_test):
      #######################################################################
      # TODO:                                                               #
      # Compute the l2 distance between the ith test point and all training #
      # points, and store the result in dists[i, :].                        #
      #######################################################################
      dists[i,:] = np.sqrt(np.sum(np.square(X[i,:] - self.X_train),axis = 1))
      #由于X是500*3072维的向量,需要加的是axis=1的部分,即3072那一部分。
      #对于每个test point,分别计算它和所有test point的距离并对axis求和。
      #######################################################################
      #                         END OF YOUR CODE                            #
      #######################################################################
    return dists

  def compute_distances_no_loops(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using no explicit loops.

    Input / Output: Same as compute_distances_two_loops
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    #########################################################################
    # TODO:                                                                 #
    # Compute the l2 distance between all test points and all training      #
    # points without using any explicit loops, and store the result in      #
    # dists.                                                                #
    #                                                                       #
    # You should implement this function using only basic array operations; #
    # in particular you should not use functions from scipy.                #
    #                                                                       #
    # HINT: Try to formulate the l2 distance using matrix multiplication    #
    #       and two broadcast sums.                                         #
    #########################################################################
    #运用了一个矩阵公式来计算test样本集和training样本集的距离矩阵
    dists = np.multiply(np.dot(X,self.X_train.T),-2)
    # self.X_train 5000*3072    
    res1 = np.sum(np.square(X),axis = 1,keepdims = True)
    #这里要将keepdims=True,使计算后依然为维度是测试样本数量的列向量
    res2 = np.sum(np.square(self.X_train),axis = 1)
    dists = np.sqrt(np.add(np.add(dists,res1),res2))
    #########################################################################
    #                         END OF YOUR CODE                              #
    #########################################################################
    return dists

  def predict_labels(self, dists, k=1):
    """
    Given a matrix of distances between test points and training points,
    predict a label for each test point.

    Inputs:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      gives the distance betwen the ith test point and the jth training point.

    Returns:
    - y: A numpy array of shape (num_test,) containing predicted labels for the
      test data, where y[i] is the predicted label for the test point X[i].  
    """
    num_test = dists.shape[0]
    y_pred = np.zeros(num_test)
    for i in range(num_test):
      # A list of length k storing the labels of the k nearest neighbors to
      # the ith test point.
      closest_y = []
      #########################################################################
      # TODO:                                                                 #
      # Use the distance matrix to find the k nearest neighbors of the ith    #
      # testing point, and use self.y_train to find the labels of these       #
      # neighbors. Store these labels in closest_y.                           #
      # Hint: Look up the function numpy.argsort.                             #
      #########################################################################
      closest_y = self.y_train[np.argsort(dists[i])[:k]]
      #一个长度为k的列表,它存储了对于第i个测试点的k个最近邻居的下标。
      #########################################################################
      # TODO:                                                                 #
      # Now that you have found the labels of the k nearest neighbors, you    #
      # need to find the most common label in the list closest_y of labels.   #
      # Store this label in y_pred[i]. Break ties by choosing the smaller     #
      # label.                                                                #
      #########################################################################
      y_pred[i] = np.argmax(np.bincount(closest_y))
      #y_pred 1*500
      #即closest_y中出现次数最多的那个数字的序号即为预测
      #########################################################################
      #                           END OF YOUR CODE                            # 
      #########################################################################

    return y_pred

cross validation部分:

num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]

X_train_folds = []
y_train_folds = []
################################################################################
# TODO:                                                                        #
# Split up the training data into folds. After splitting, X_train_folds and    #
# y_train_folds should each be lists of length num_folds, where                #
# y_train_folds[i] is the label vector for the points in X_train_folds[i].     #
# Hint: Look up the numpy array_split function.                                #
################################################################################
X_train_folds = np.array_split(X_train,num_folds)
y_train_folds = np.array_split(y_train,num_folds)
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {}
#将不同k值下的准确率保存在一个字典中。交叉验证之后,k_to_accuracies[k]保存了一个长度为折数的list,值为k值下的准确率.

################################################################################
# TODO:                                                                        #
# Perform k-fold cross validation to find the best value of k. For each        #
# possible value of k, run the k-nearest-neighbor algorithm num_folds times,   #
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all     #
# values of k in the k_to_accuracies dictionary.                               #
################################################################################
#对于每一个k值,执行kNN算法num_folds次,每一次执行中,选择一折为验证集,其它折为训练集。
#将不同k值在不同折上的验证结果保存在k_to_accuracies字典中。            
classifier = KNearestNeighbor()
for k in k_choices:
    accuracies = np.zeros(num_folds)
    for fold in range(num_folds):
        temp_X = X_train_folds[:]
        temp_y = y_train_folds[:]
        X_validate_fold = temp_X.pop(fold)
        y_validate_fold = temp_y.pop(fold)
        
        temp_X = np.array([y for x in temp_X for y in x])
        temp_y = np.array([y for x in temp_y for y in x])
        classifier.train(temp_X,temp_y)
        
        y_test_pred = classifier.predict(X_validate_fold,k)
        num_correct = np.sum(y_test_pred == y_validate_fold)
        accuracy = num_correct/num_test
        accuracies[fold] = accuracy
    k_to_accuracies[k] = accuracies
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# Print out the computed accuracies
for k in sorted(k_to_accuracies):
    for accuracy in k_to_accuracies[k]:
        print('k = %d, accuracy = %f' % (k, accuracy))

Note

  1. x.shape 没有括号
  2. axis的用法
    通过指定不同的axis,numpy会沿着不同的方向进行操作,如果不设置,则表示对所有的元素进行操作,如果axis=0,则沿着纵轴进行操作,若axis=1则沿着横轴进行操作。但是这只是仅仅对于二维数组而言。但是可以总结为一句话:设axis=i ,则numpy沿着第i个下标变化的方向 进行操作。
    最直观的:函数所选的axis的值,就表明 x[][][] 的第几个方块号,从0开始,代表第一个[ ],即x[ ] [ ] [ ]
    参考:https://blog.csdn.net/xiongchengluo1129/article/details/79062991
  3. keepdims
    keepdims主要用于保持矩阵的二维特性
    参考:https://blog.csdn.net/u012560212/article/details/78393836
  4. argsort
    argsort()函数是将x中的元素从小到大排列,提取其对应的index(索引),然后输出到y
  5. argmax
    argmax返回的是最大数的索引
  6. bincount
    每个bin给出了它的索引值在x中出现的次数
# 我们可以看到x中最大的数为7,因此bin的数量为8,那么它的索引值为0->7
x = np.array([0, 1, 1, 3, 2, 1, 7])
# 索引0出现了1次,索引1出现了3次......索引5出现了0次......
np.bincount(x)
#因此,输出结果为:array([1, 3, 1, 1, 0, 0, 0, 1])

参考: http://www.cnblogs.com/eilearn/p/9015375.html

原文地址:https://www.cnblogs.com/bernieloveslife/p/10146488.html