【笔记】一元函数的不定积分

基本积分公式

$int 0dx=c$

$int x{u}dx=frac{x{u+1}}{u+1}+c$

$int frac{dx}{x}=ln|x|+c$

$int a{x}dx=frac{ax}{lna}+c$

$int cosxdx=sinx+c$

$int sinxdx=-cosx+c$

$int sin^2xdx=frac{1}{2}x-frac{1}{4}sin2x+c$

$int cos^2xdx=frac{1}{2}x+frac{1}{4}sin2x+c$

$int tan^2xdx=tanx-x+c$

$int cot^2xdx=-cotx-x+c$

$int csc^2x dx=-cotx+c$

$int sec^2x dx=tanx+c$

$int secxtanx=secx+c$

$int cscxcotx=-cscx+c$

$int frac{dx}{sqrt{a2-x{2}}}=arcsinfrac{x}{a}+c$

$int frac{dx}{a2+x2}=frac{1}{a}arctanfrac{x}{a}+c$

$int frac{1}{sqrt{x^2pm a2}}=lin(x+sqrt{x2pm a^2})+c$

$int tanxdx=-ln|cosx|+c$

$int cotxdx=ln|sinx|+c$

$int secxdx=ln|secx+tacx|+c$

$int cscxdx=ln|cscx+cotx|+c$

$int arcsinxdx=xarcsinx+(1-x2){frac{1}{2}}+c$
$int arctanxdx=frac{1}{2}x^2arctanx+frac{1}{2}arctanx-frac{1}{2}x+c$
$int ln|1+x|=(1+x)ln|1+x|-x+c$


三角恒等式

$sin2x+cos2=1$

$1+tan^2x=secx$

$1+cot^2x=cscx$

有理函数的不定积分

化部分分式法

  1. 对分式$frac{Pn(x)}{(x-a)(x-b)(x-c)2(x-d)2}$应化为:

    $$frac{Pn(x)}{(x-a)(x-b)(x-c)^2} =frac{A}{x-a}+frac{B}{x-b}+frac{C_1}{x-c}+frac{C_2}{(x-c)^2}$$

引理:
一个多项式不可因式分解的最高次为2
即任意多项式$ax3+bx2+cx+d$一定可以被分解为$(lambda x+mu)(x^2+px+q)$
但$(x^2+px+q)$不一定能被分解

  1. 对分式$frac{Pn(x)}{(x-a)(x-b)(x2+px+q)2}$应化为:

    $$frac{Pn(x)}{(x-a)(x-b)(x2+px+q)2} =frac{A}{x-a}+frac{B}{x-b}+frac{C_1x+D_1}{x2+px+q}+frac{C_2x+D_2}{(x2+px-q)^2}$$

之后对简单的分式直接求不定积分,对复杂的分式凑微分

Euler代换法

用$R(u,v)$表示关于$u,v$的有理函数

  1. 对于$R(x,sqrt{x^2+px+q})$ ($x^2+px+q$不能再因式分解)
    通常用$t=x+sqrt{x^2+px+q}$代换.

  2. 对于$R(x,sqrt{x^2+px+q})$ ($x^2+px+q=(ax+b)(cx+d)$)
    通常用$t=sqrt{frac{ax+b}{cx+d}}$代换

三角代换

对于同时出现根号和$a2-x2$一类的式子时,采用三角代换:
$sqrt{x2+a2} ightarrow x=atant$

$sqrt{x2-a2} ightarrow x=asect$

$sqrt{a2-x2} ightarrow x=asint$

$int frac{dx}{a2+x2}=frac{1}{a}arctanfrac{x}{a}+c$

$int frac{dx}{sqrt{a2-x2}}=arcsinfrac{x}{a}+c$

例题

分部积分法

$eg.1 int xe^xdx$

$
egin{aligned}
原式 & = int x de^x \
& = xe^x-int e^xdx \
& = (x-1)e^x
end{aligned}
$


$eg.2 int e^xsinxdx$

$
egin{aligned}
原式 & = int sinx de^x \
& = e^xsinx - int e^xdsinx \
& = e^xsinx - int e^xcosxdx \
& = e^xsinx - int cosxde^x \
& = e^xsinx - e^xcosx - int e^xsinxdx \
end{aligned}
$

$$Rightarrow 2int exsinxdx=ex(sinx-cosx)+c$$

$$Rightarrow int exsinxdx=frac{1}{2}ex(sinx-cosx)+c$$

此类题目最终化为$a=b+c-aRightarrow a=frac{1}{2}b+c$的形式
注意在分部积分后及时套用第二换元法


$eg.3int xlnxdx$

$
egin{aligned}
原式 & = int lnxdfrac{x^2}{2} \
& = frac{x^2}{2}lnx - int frac{x^2}{2}dlnx \
& = frac{x^2}{2}lnx - int frac{x^2}{2}frac{1}{x}dx \
& = frac{x^2}{2}lnx - int frac{x}{2}dx \
& = frac{x^2}{2}lnx - frac{1}{4}x^2+c
end{aligned}
$

分部积分的运用中可加入凑微分

凑微分的顺序:指数函数>三角函数>幂函数


$eg.4int sqrt{a2+x2}{ m d}x$
$
egin{aligned}
原式 & = xsqrt{a2+x2} - int frac{x2}{sqrt{a2+x^2}}{ m d}x \
& = xsqrt{a2+x2} - int frac{x2+a2-a2}{sqrt{a2+x^2}}{ m d}x \
& = xsqrt{a2+x2} - int sqrt{a2+x2}{ m d}x - a^2int frac{{ m d}x}{sqrt{a2+x2}} \
& = xsqrt{x2+a2} + a2ln|x+sqrt{x2+a^2}| - int sqrt{a2+x2}{ m d}x + c \
end{aligned}
$
$
egin{aligned}
Rightarrow 2int xsqrt{x2+a2} = xsqrt{x2+a2} + a2ln|x+sqrt{x2+a^2}|+c \
Rightarrow int xsqrt{x2+a2} = frac{1}{2}xsqrt{x2+a2} + frac{1}{2}a2ln|x+sqrt{x2+a^2}|+c
end{aligned}
$

有理真分式与Eular代换

$eg.1int frac{x}{x^2-5x+6}{ m d}x$
$
egin{aligned}
原式 & = int frac{x}{(x-2)(x-3)}{ m d}x \
& = int (frac{A}{x-2} + frac{B}{x-3}){ m d}x \
& Rightarrow A(x-3)+B(x-2) = x \
& Rightarrow egin{cases}
A = -2 \
B = -3
end{cases} \
& = int (frac{-2}{x-2}+frac{-3}{x-3}){ m d}x \
& = -2ln|x—2|+3ln|x-3|+c
end{aligned}
$
$eg.2int frac{{ m d}x}{x+sqrt{x^2+x+1}}$
$令t=x+sqrt{x^2+x+1}$
$Rightarrow egin{cases} x=frac{t^2-1}{2t+1} \
sqrt{x^2+x+1}= frac{t^2+t+1}{2t+1} \
{ m d}x=frac{2(t2+t+1)}{(2t+1)2}{ m d}t
end{cases}
$
$
egin{aligned}
原式 & = 2int frac{t2+t+1}{t(2t+1)2}{ m d}t \
& = int (frac{2}{t}-frac{3}{2t+1}-frac{3}{(2t+1)^2}){ m d}x \
& = lnt^2 - frac{3}{2}ln|2t+1|+frac{3}{2}frac{1}{2t+1}+c \
& = 2ln|x+sqrt{x2+x+1}|-frac{3}{2}ln|2x+2sqrt{x2+x+1}+1|+frac{3}{2(2x+2sqrt{x^2+x+1}+1)}+c
end{aligned}
$

自消型

$eg.1 int e{2x}(tanx+1)2{ m d}x$
$
egin{aligned}
原式 & = int e{2x}(tan2x+1+2tanx){ m d}x \
& = int e{2x}(sec2x + 2tanx){ m d}x \
& = int e^{2x}{ m d}tanx + 2int e^{2x} tanx { m d}x \
& = e^{2x}tanx -int tanx{ m d}e^{2x} +2int e^{2x}tanx{ m d}x \
& = e^{2x}tanx - 2int tanxe^{2x}{ m d}x + 2int e^{2x}tanx{ m d}x \
& = e^{2x}tanx +c
end{aligned}
$


$eg.2 习题3.2T4.20
int frac{x2ex}{(x+2)^2}{ m d}x$
$
令 t = x+2 Rightarrow egin{cases} x^2 = (t-2)^2 \ ex=e{t-2} end{cases}
$
$
egin{aligned}
原式 & = e^{-2} int frac{t2-4t+4}{t2}e^t{ m d}t \
& = e^{-2}(int e^t{ m d}t-4int frac{1}{t}e^t{ m d}t+int frac{4}{t2}et{ m d}x) \
& = e{-2}[et-frac{4}{t}e^t+(-4)int frac{1}{t2}et{ m d}x+int frac{4}{t2}et{ m d}t] \
& = e{-2}(et-frac{4}{t}e^t)+c
end{aligned}
$


$eg.3习题3.2T6.22
int (x2+2x-1)e{x+frac{1}{x}}{ m d}x$
$
egin{aligned}
原式 & = int (x2-1)e{x+frac{1}{x}}{ m d}x + int 2xe^{x+frac{1}{x}}{ m d}x \
& = int (x2-1)e{x+frac{1}{x}}{ m d}x + int e^{x+frac{1}{x}}{ m d}x^2 \
& = int (x2-1)e{x+frac{1}{x}}{ m d}x + x2e{x+frac{1}{x}}-int x^2{ m d}e^{x+frac{1}{x}} \
& = int (x2-1)e{x+frac{1}{x}}{ m d}x + x2e{x+frac{1}{x}}-int x2e{x+frac{1}{x}}frac{x2-1}{x2}{ m d}x \
& =x2e{x+frac{1}{x}} +c
end{aligned}
$

其他

$eg.1习题3.3T2.9
int frac{1}{sin4x+cos4x}{ m d}x$
$
egin{aligned}
原式 & = int frac{1}{(sin2x+cos2x)2-2sin2xcos^2x}{ m d}x \
& = int frac{{ m d}x}{1-2sin2xcos2x} \
& = int frac{{rm d}x}{1-frac{1}{2}sin^22x} \
& = int frac{{ m d}x}{1-frac{1}{2csc^22x}} \
& = int frac{csc22x}{csc22x-frac{1}{2}}{ m d}x \
& = frac{1}{2}int frac{{ m d}cot2x}{1+cot^22x-frac{1}{2}} \
& = frac{1}{2}int frac{{ m d}cot2x}{frac{1}{2}+cot^22x} \
& = frac{sqrt{2}}{2}arctansqrt{2}cotx+c
end{aligned}
$


$eg.2int frac{3x+2}{x^2+x+1}{ m d}x$
$
egin{aligned}
原式 & = int frac{frac{3}{2}(x2+x+1)'+frac{1}{2}}{x2+x+1}{ m d}x \
& = frac{3}{2}ln(x^2+x+1)+frac{1}{2}int frac{1}{x^2+x+1}{ m d}x+c \
& = frac{3}{2}ln(x^2+x+1)+frac{1}{2}int frac{{ m d}(x+frac{1}{2})}{(x+frac{1}{2})^2+frac{3}{4}}+c cdots cdots cdots ext{分母凑平方和,分子凑微分} \
& = frac{3}{2}ln(x^2+x+1)+frac{1}{2} imes frac{2}{sqrt{3}}arctanfrac{2(x+frac{1}{2})}{sqrt{3}}+c
end{aligned}
$

原文地址:https://www.cnblogs.com/bbqub/p/Antiderivative.html