CPUID

http://en.wikipedia.org/wiki/CPUID

CPUID

From Wikipedia, the free encyclopedia
  

The CPUID opcode is a processor supplementary instruction (its name derived from CPU IDentification) for the x86 architecture. It was introduced by Intel in 1993 when it introduced thePentium and SL-Enhanced 486 processors.[1]

By using the CPUID opcode, software can determine processor type and the presence of features (like MMX/SSE). The CPUID opcode is 0Fh, 0A2h (as two bytes, or 0A20Fh as a single word) and the value in the EAX register, and in some cases the ECX register, specifies what information to return.

Prior to the general availability of the CPUID instruction, programmers would write esoteric machine code which exploited minor differences in CPU behavior in order to determine the processor make and model.[2][3] Outside the x86 family, developers are sometimes still required to use esoteric processes to determine the variations in CPU design that are present. While the CPUID instruction is specific to the x86 architecture, other architectures often provide on-chip registers which can be read to obtain the same sorts of information provided by this instruction.

Calling CPUID[edit]

In assembly language the CPUID instruction takes no parameters as CPUID implicitly uses the EAX register. The EAX register should be loaded with a value specifying what information to return. CPUID should be called with EAX = 0 first, as this will return the highest calling parameter that the CPU supports. To obtain extended function information CPUID should be called with the second most significant bit of EAX set. To determine the highest extended function calling parameter, call CPUID with EAX = 80000000h.

EAX=0: Get vendor ID[edit]

This returns the CPU's manufacturer ID string - a twelve character ASCII string stored in EBX, EDX, ECX - in that order. The highest basic calling parameter (largest value that EAX can be set to before calling CPUID) is returned in EAX.

The following are known processor manufacturer ID strings:

For instance, on a GenuineIntel processor values returned in EBX is 0x756e6547, EDX is 0x49656e69 and ECX is 0x6c65746e. The following code is written in GNU Assembler for the x86-64 architecture and displays the vendor ID string as well as the highest calling parameter that the CPU supports.

        .data
 
s0:
        .asciz  "Largest basic function number supported: %i
"
s1:
        .asciz  "Vendor ID: %.12s
"
 
        .text
 
        .align  32
        .globl  _start
_start:
        pushq   %rbp
        pushq   %rbx
        movq    %rsp,%rbp
        subq    $16,%rsp
 
        xorl    %eax,%eax
        cpuid
 
        movl    %ebx,0(%rsp)
        movl    %edx,4(%rsp)
        movl    %ecx,8(%rsp)
 
        movq    $s0,%rdi
        movl    %eax,%esi
        xorb    %al,%al
        call    printf
 
        movq    $s1,%rdi
        movq    %rsp,%rsi
        xorb    %al,%al
        call    printf
 
        movq    %rbp,%rsp
        popq    %rbx
        popq    %rbp
        movl    $1,%eax
        int     $0x80

EAX=1: Processor Info and Feature Bits[edit]

This returns the CPU's stepping, model, and family information in EAX (also called the signature of a CPU), feature flags in EDX and ECX, and additional feature info in EBX.

The format of the information in EAX is as follows:

  • 3:0 - Stepping
  • 7:4 - Model
  • 11:8 - Family
  • 13:12 - Processor Type
  • 19:16 - Extended Model
  • 27:20 - Extended Family

Intel has suggested applications to display the family of a CPU as the sum of the "Family" and the "Extended Family" fields shown above, and the model as the sum of the "Model" and the 4-bit left-shifted "Extended Model" fields.[4]

AMD recommends the same only if "Family" is equal to 15 (i.e. all bits set to 1). If "Family" is lower than 15, only the "Family" and "Model" fields should be used while the "Extended Family" and "Extended Model" bits are reserved. If "Family" is set to 15, then "Extended Family" and the 4-bit left-shifted "Extended Model" should be added to the respective base values.[5]

The processor info and feature flags are manufacturer specific but usually the Intel values are used by other manufacturers for the sake of compatibility.

The standard Intel feature flags are as follows[6][7]

EAX=1 CPUID feature bits
BitEDXECX
ShortFeatureShortFeature
0 fpu Onboard x87 FPU pni Prescott New Instructions (SSE3)
1 vme Virtual mode extensions (VIF) pclmulqdq PCLMULQDQ support
2 de Debugging extensions (CR4 bit 3) dtes64 64-bit debug store (edx bit 21)
3 pse Page Size Extension monitor MONITOR and MWAIT instructions (SSE3)
4 tsc Time Stamp Counter ds_cpl CPL qualified debug store
5 msr Model-specific registers vmx Virtual Machine eXtensions
6 pae Physical Address Extension smx Safer Mode Extensions (LaGrande)
7 mce Machine Check Exception est Enhanced SpeedStep
8 cx8 CMPXCHG8 (compare-and-swap) instruction tm2 Thermal Monitor 2
9 apic Onboard Advanced Programmable Interrupt Controller ssse3 Supplemental SSE3 instructions
10 (reserved) cid Context ID
11 sep SYSENTER and SYSEXIT instructions (reserved)
12 mtrr Memory Type Range Registers fma Fused multiply-add (FMA3)
13 pge Page Global Enable bit in CR4 cx16 CMPXCHG16B instruction
14 mca Machine check architecture xtpr Can disable sending task priority messages
15 cmov Conditional move and FCMOV instructions pdcm Perfmon & debug capability
16 pat Page Attribute Table (reserved)
17 pse36 36-bit page size extension pcid Process context identifiers (CR4 bit 17)
18 pn Processor Serial Number dca Direct cache access for DMA writes[8][9]
19 clflush CLFLUSH instruction (SSE2) sse4_1 SSE4.1 instructions
20 (reserved) sse4_2 SSE4.2 instructions
21 dts Debug store: save trace of executed jumps x2apic x2APIC support
22 acpi Onboard thermal control MSRs for ACPI movbe MOVBE instruction (big-endianIntel Atom only)
23 mmx MMX instructions popcnt POPCNT instruction
24 fxsr FXSAVE, FXRESTOR instructions, CR4 bit 9 tscdeadline APIC supports one-shot operation using a TSC deadline value
25 sse SSE instructions (a.k.a. Katmai New Instructions) aes AES instruction set
26 sse2 SSE2 instructions xsave XSAVE, XRESTOR, XSETBV, XGETBV
27 ss CPU cache supports self-snoop osxsave XSAVE enabled by OS
28 ht Hyper-threading avx Advanced Vector Extensions
29 tm Thermal monitor automatically limits temperature f16c CVT16 instruction set (half-precision) FP support
30 ia64 IA64 processor emulating x86 rdrnd RDRAND (on-chip random number generator) support
31 pbe Pending Break Enable (PBE# pin) wakeup support hypervisor Running on a hypervisor (always 0 on a real CPU, but also with some hypervisors)

EAX=2: Cache and TLB Descriptor information[edit]

This returns a list of descriptors indicating cache and TLB capabilities in EAX, EBX, ECX and EDX registers.

EAX=3: Processor Serial Number[edit]

This returns the processor's serial number. The processor serial number was introduced on Intel Pentium III, but due to privacy concerns, this feature is no longer implemented on later models (PSN feature bit is always cleared). Transmeta's Efficeon and Crusoe processors also provide this feature. AMD CPUs however, do not implement this feature in any CPU models.

For Intel Pentium III CPUs, the serial number is returned in EDX:ECX registers. For Transmeta Efficeon CPUs, it is returned in EBX:EAX registers. And for Transmeta Crusoe CPUs, it is returned in EBX register only.

Note that the processor serial number feature must be enabled in the BIOS setting in order to function.

EAX=80000000h: Get Highest Extended Function Supported[edit]

The highest calling parameter is returned in EAX.

EAX=80000001h: Extended Processor Info and Feature Bits[edit]

This returns extended feature flags in EDX and ECX.

AMD feature flags are as follows[10][11]

EAX=80000001h CPUID feature bits
BitEDXECX
ShortFeatureShortFeature
0 fpu Onboard x87 FPU lahf_lm LAHF/SAHF in long mode
1 vme Virtual mode extensions (VIF) cmp_legacy Hyperthreading not valid
2 de Debugging extensions (CR4 bit 3) svm Secure Virtual Machine
3 pse Page Size Extension extapic Extended APIC space
4 tsc Time Stamp Counter cr8_legacy CR8 in 32-bit mode
5 msr Model-specific registers abm Advanced bit manipulation (lzcnt and popcnt)
6 pae Physical Address Extension sse4a SSE4a
7 mce Machine Check Exception misalignsse Misaligned SSE mode
8 cx8 CMPXCHG8 (compare-and-swap) instruction 3dnowprefetch PREFETCH and PREFETCHW instructions
9 apic Onboard Advanced Programmable Interrupt Controller osvw OS Visible Workaround
10 (reserved) ibs Instruction Based Sampling
11 syscall SYSCALL and SYSRET instructions xop XOP instruction set
12 mtrr Memory Type Range Registers skinit SKINIT/STGI instructions
13 pge Page Global Enable bit in CR4 wdt Watchdog timer
14 mca Machine check architecture (reserved)
15 cmov Conditional move and FCMOV instructions lwp Light Weight Profiling[12]
16 pat Page Attribute Table fma4 4 operands fused multiply-add
17 pse36 36-bit page size extension tce Translation Cache Extension
18 (reserved)
19 mp Multiprocessor Capable nodeid_msr NodeID MSR
20 nx NX bit (reserved)
21 (reserved) tbm Trailing Bit Manipulation
22 mmxext Extended MMX topoext Topology Extensions
23 mmx MMX instructions perfctr_core Core performance counter extensions
24 fxsr FXSAVE, FXRSTOR instructions, CR4 bit 9 perfctr_nb NB performance counter extensions
25 fxsr_opt FXSAVE/FXRSTOR optimizations (reserved)
26 pdpe1gb Gibibyte pages (reserved)
27 rdtscp RDTSCP instruction (reserved)
28 (reserved)
29 lm Long mode (reserved)
30 3dnowext Extended 3DNow! (reserved)
31 3dnow 3DNow! (reserved)

EAX=80000002h,80000003h,80000004h: Processor Brand String[edit]

These return the processor brand string in EAX, EBX, ECX and EDX. CPUID must be issued with each parameter in sequence to get the entire 48-byte null-terminated ASCII processor brand string.[4] It is necessary to check whether the feature is supported by the CPU by issuing CPUID with EAX = 80000000h first and checking if the returned value is greater or equal to 80000004h.

.section .data
 
s0 : .asciz "Processor Brand String: %.48s
"
err : .asciz "Feature unsupported.
"
 
.section .text
 
.global main
.type main,@function
.align 32
main:
        pushq   %rbp
        movq    %rsp,   %rbp
        subq    $48,    %rsp
        pushq   %rbx
 
        movl    $0x80000000,    %eax
        cpuid
 
        cmpl    $0x80000004,    %eax
        jl      error
 
        movl    $0x80000002,    %esi
        movq    %rsp,   %rdi
 
.align 16
get_brand:
        movl    %esi,   %eax
        cpuid
 
        movl    %eax,   (%rdi)
        movl    %ebx,   4(%rdi)
        movl    %ecx,   8(%rdi)
        movl    %edx,   12(%rdi)
 
        addl    $1,     %esi
        addq    $16,    %rdi
        cmpl    $0x80000004,    %esi
        jle     get_brand
 
print_brand:
        movq    $s0,    %rdi
        movq    %rsp,   %rsi
        xorb    %al,    %al
        call    printf
 
        jmp     end
 
.align 16
error:
        movq    $err,   %rdi
        xorb    %al,    %al
        call    printf
 
.align 16
end:
        popq    %rbx
        movq    %rbp,   %rsp
        popq    %rbp
        xorl    %eax,   %eax
        ret

EAX=80000005h: L1 Cache and TLB Identifiers[edit]

This function contains the processor’s L1 cache and TLB characteristics.

EAX=80000006h: Extended L2 Cache Features[edit]

Returns details of the L2 cache in ECX, including the line size in bytes, type of associativity (encoded by a 4 bits) and the cache size.

.section .data
 
info : .ascii "L2 Cache Size : %u KB
Line size : %u bytes
"
.asciz "Associativity : %02xh
"
err : .asciz "Feature unsupported.
"
 
.section .text
 
.global main
.type main,@function
.align 32
main:
        pushq   %rbp
        movq    %rsp,   %rbp
        pushq   %rbx
 
        movl    $0x80000000,    %eax
        cpuid
 
        cmpl    $0x80000006,    %eax
        jl      error
 
        movl    $0x80000006,    %eax
        cpuid
 
        movl    %ecx,   %eax
 
        movl    %eax,   %edx
        andl    $0xff,  %edx
 
        movl    %eax,   %ecx
        shrl    $12,    %ecx
        andl    $0xf,   %ecx
 
        movl    %eax,   %esi
        shrl    $16,    %esi
        andl    $0xffff,%esi
 
        movq    $info,  %rdi
        xorb    %al,    %al
        call    printf
 
        jmp end
 
.align 16
error:
        movq    $err,   %rdi
        xorb    %al,    %al
        call    printf
 
.align 16
end:
        popq    %rbx
        movq    %rbp,   %rsp
        popq    %rbp
        xorl    %eax,   %eax
        ret

EAX=80000007h: Advanced Power Management Information[edit]

This function provides advanced power management feature identifiers.

EAX=80000008h: Virtual and Physical address Sizes[edit]

Returns largest virtual and physical address sizes in EAX.

Accessing the id from other languages[edit]

This information is easy to access from other languages as well. For instance, the C++ code for gcc below prints the first five values, returned by the cpuid:

#include <iostream>
 
int main()
{
  int a, b;
 
  for (a = 0; a < 5; a++)
  {
    __asm__("cpuid;"
            :"=a"(b)                 // EAX into b (output)
            :"0"(a)                  // a into EAX (input)
            :"%ebx","%ecx","%edx");  // clobbered registers
 
    std::cout << "The code " << a << " gives " << b << std::endl;
  }
 
  return 0;
}

In C, the code may be shortened to:

int main()
{
  int a, b;
 
  for (a = 0; a < 5; a++)
  {
    __asm__("cpuid"
            :"=a"(b)                 // EAX into b (output)
            :"0"(a)                  // a into EAX (input)
            :"%ebx","%ecx","%edx");  // clobbered registers
 
    printf("The code %i gives %i
", a, b);
  }
 
  return 0;
}

Or, a generally useful C implementation that works on 32 and 64 bit setups:

#include <stdio.h>
 
int main() {
    int i;
    unsigned int index = 0;
    unsigned int regs[4];
    int sum;
    __asm__ __volatile__(
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
        "pushq %%rbx     
	" /* save %rbx */
#else
        "pushl %%ebx     
	" /* save %ebx */
#endif
        "cpuid            
	"
        "movl %%ebx ,%[ebx]  
	" /* write the result into output var */
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
        "popq %%rbx 
	"
#else
        "popl %%ebx 
	"
#endif
        : "=a"(regs[0]), [ebx] "=r"(regs[1]), "=c"(regs[2]), "=d"(regs[3])
        : "a"(index));
    for (i=4; i<8; i++) {
        printf("%c" ,((char *)regs)[i]);
    }
    for (i=12; i<16; i++) {
        printf("%c" ,((char *)regs)[i]);
    }
    for (i=8; i<12; i++) {
        printf("%c" ,((char *)regs)[i]);
    }
    printf("
");
}

Another version of that:

#include <stdio.h>
 
void cpuid(unsigned info, unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx)
{
    __asm__(
        "xchg %%ebx, %%edi;" /* 32bit PIC: don't clobber ebx */
        "cpuid;"
        "xchg %%ebx, %%edi;"
        :"=a" (*eax), "=D" (*ebx), "=c" (*ecx), "=d" (*edx)
        :"0" (info)
    );
}
 
int main()
{
  unsigned int eax, ebx, ecx, edx;
  int i;
 
  for (i = 0; i < 6; ++i)
  {
    cpuid(i, &eax, &ebx, &ecx, &edx);
    printf("eax=%i: %#010x %#010x %#010x %#010x
", i, eax, ebx, ecx, edx);
  }
 
  return 0;
}

Microsoft Visual C compiler has builtin function __cpuid() so cpuid instruction may be embedded without using inline assembly. This is handy since x64 version of MSVC doesn't allow inline assembly at all. The same program for MSVC would be:

#include <iostream>
#include <intrin.h>
 
int main()
{
  int b[4];
 
  for (int a = 0; a < 5; a++)
  {
    __cpuid(b, a);
    std::cout << "The code " << a << " gives " << b[0] << std::endl;
  }
 
  return 0;
}

For Borland/Embarcadero C compilers (bcc32), native asm function calls are necessary, as there is no asm() implementation. The pseudo code:

  unsigned int a, b, c, d;
  unsigned int InfoType = 0;
  __asm xor EBX, EBX;
  __asm xor ECX, ECX;
  __asm xor EDX, EDX;
  __asm mov EAX, InfoType;
  __asm cpuid;
  __asm mov a, EAX;
  __asm mov b, EBX;
  __asm mov c, ECX;
  __asm mov d, EDX;

Many interpreted or compiled scripting languages are capable of using CPUID via an FFI library. One such implementation shows usage of the Ruby FFI module to execute assembly language that includes the CPUID opcode.

Uptake of CPUID instructions outside x86[edit]

The Intel-AMD x86 family has so far been the only CPU family to have a CPUID instruction. RISCDSP and transputer like chip families have not taken up the instruction in any noticeable way, in spite of having (in relative terms) as many variations in design. ARM architectures have a CPUID coprocessor register for the same purpose.[13] IBM mainframe processor z10 and predecessors have had the Store CPUID (STIDP) instruction for querying the processor ID.[14]

See also[edit]

  • CPU-Z, a Windows utility that uses CPUID to identify various system settings

References[edit]

  1. Jump up^ "Intel 64 and IA-32 Architectures Software Developer’s Manual". Intel.com. Retrieved 2013-04-11.
  2. Jump up^ "Detecting Intel Processors - Knowing the generation of a system CPU". Rcollins.org. Retrieved 2013-04-11.
  3. Jump up^ "LXR linux-old/arch/i386/kernel/head.S". Lxr.linux.no. Retrieved 2013-04-11.
  4. Jump up to:a b "Intel® Processor Identification and the CPUID Instruction". Download.intel.com. 2012-03-06. Retrieved 2013-04-11.
  5. Jump up^http://support.amd.com/us/Embedded_TechDocs/25481.pdf
  6. Jump up^ Application Note 485: Intel Processor Identification and the CPUID InstructionIntel, January 2011, retrieved 2011-05-29
  7. Jump up^ Linux kernel source codearch/x86/include/asm/cpufeatures.h
  8. Jump up^ Huggahalli, Ram; Iyer, Ravi; Tetrick, Scott (2005). "Direct Cache Access for High Bandwidth Network I/O". ACM SIGARCH Computer Architecture News 33 (2): 50–59.doi:10.1145/1080695.1069976.CiteSeerX:10.1.1.91.957. edit
  9. Jump up^ Drepper, Ulrich (2007), What Every Programmer Should Know About MemoryCiteSeerX:10.1.1.91.957
  10. Jump up^ CPUID SpecificationAMD, September 2010, retrieved 2013-04-02
  11. Jump up^ Linux kernel source code [1]
  12. Jump up^ Lightweight Profiling SpecificationAMD, August 2010, retrieved 2013-04-03
  13. Jump up^ "ARM Information Center". Infocenter.arm.com. Retrieved 2013-04-11.
  14. Jump up^ "IBM System z10 Enterprise Class Technical Guide".

External links[edit]

http://software.intel.com/en-us/node/183990

Intel Architecture and Processor Identification With CPUID Model and Family Numbers

This article is intended to aid software developers in understanding the "big picture" of Intel's recent architecture and processor releases. The "tick tock" model adds predictability to the Intel® architecture roadmap. However within each "tick" and "tock" architecture, multiple processors are launched to support the many diverse computing needs of consumers. While the general Instruction Set Architecture (ISA) and feature set within a given architecture are identical, certain model specific variations occur, and are generally enumerated through CPUID interrogation[1]. The CPUID model number is a convenient way of anticipating the model specific functionality that is available at runtime and subsequently designing the architecture specific parts of software (nevertheless, at runtime, the feature bits in the CPUID should always be verified before use).

The information in the table below is composed from the "Intel® Processor Identification and the CPUID Instruction" and the official Intel product information source.

For identifying a particular processor, please use the Intel® Processor Identification Utility for Microsoft Windows* operating systems or the bootable version for other operating systems[2].

Notes

  • The -EP suffix denotes a Dual Processor, meaning this processor is designed to operate in a Dual Processor platform (but can still operate in a Single Processor platform). The -EX suffix denotes a Multi-Processor (MP), meaning this processor is designed to operate in a Multiprocessor platform, but can still operate in a Single or Dual processor platform configuration.
  • The Family number is an 8-bit number derived from the processor signature by adding the Extended Family number (bits 27:20) and the Family number (bits 11:8). See section 5.1.2.2 of the "Intel Processor Identification and the CPUID Instruction".
  • The Model number is an 8 bit number derived from the processor signature by shifting the Extended Model number (bits 19:16) 4 bits to the left and adding the Model number (bits 7:4) . See section 5.1.2.2 of the "Intel Processor Identification and the CPUID Instruction".

Mainline Architectures and Processors

This table includes the mainline processors on 90nm and later process technology. Please read and understand these important disclaimersprior to use.

Process
Technology

Microarchitecture
Codename

Processor
Codename

Processor
Signature

Family
Number

Model
Number

Intel® Brand
Name(s)

Intel® Brand
Processor Number

22 nm

IvyBridge

IvyBridge

0x306Ax

0x06

0x3A

Core™ i3
Core™ i5
Core™ i7
Core™ i7 Extreme
Xeon™ E3

i3-31xx/32xx-T/U
i5-3xxx-T/S/M/K/ME
i7-3xxx-S/K/M/QM/LE/UE/QE
i7-3920XM
E3-12xxV2

32 nm

SandyBridge

SandyBridge

0x206Ax

0x2A

Core™ i3
Core™ i5
Core™ i7
Core™ i7 Extreme
Celeron™ Desktop
Celeron™ Mobile
Pentium™ Desktop
Pentium™ Mobile
Xeon™ E3

i3-21xx/23xx-T/M/E/UE
i5-23xx/24xx/25xx-T/S/M/K
i7-2xxx-S/K/M/QM/LE/UE/QE
i7-29xxXM 
G4xx, G5xx
8xx, B8xx
350, G6xx, G6xxT, G8xx
9xx, B9xx
E3-12xx

SandyBridge-E

0x206Dx

0x2D

Core™ i7
Core™ i7 Extreme

I7-3820/3930K
i7-3960X

SandyBridge-EN

Xeon™ E5

E5-24xx

SandyBridge-EP

Xeon™ E5

E5-16xx, 26xx/L/W

Westmere

Arrandale

0x2065x

0x25

Celeron™ Mobile
Pentium™ Mobile
Core™ i3
Core™ i5
Core™ i7

P4xxx, U3xxx
P6xxx, U5xxx
i3-3xxE, i3-3xxM, i3-3xxUM
i5-4xxM/UM, i5-5xxE/M/UM
i7-6xxE/LE/UE/M/LM/UM

Clarksdale

Pentium™ Desktop
Core™ i3
Core™ i5
Xeon™ 3000

G69xx
i3-5xx
i5-6xx, i5-6xxK
L34xx

Gulftown

0x206Cx

0x2C

Core™ i7
Core™ i7 Extreme
Xeon™ 3000

i7-9xx
i7-9xxX
W36xx

Westmere-EP

Xeon™ 3000
Xeon™ 5000

W36xx
L56xx, E56xx, X56xx

Westmere-EX

0x206Fx

0x2F

Xeon™ E7

E7-2xxx, E7-48xx, E7-88xx

45 nm

Nehalem

Clarksfield

0x106Ex

0x1E

Core™ i7
Core™ i7 Extreme

i7-7xxQM, i7-8xxQM
i7-9xxXM

Lynnfield

Core™ i5
Core™ i7
Xeon™ 3000

i5-7xx, i5-7xxS
i7-8xx, i7-8xxS, i7-8xxK
X34xx

Jasper Forest

Xeon™ 5000
Celeron™ Desktop

LC55xx, EC55xx
P10xx

Bloomfield

0x106Ax

0x1A

Core™ i7 Extreme
Core™ i7
Xeon™ 3000

i7-965/975
i7-9x0
W35xx

Nehalem-EP

Xeon™ 5000

L55xx, E55xx, X55xx, W55xx

Nehalem-EX

0x206Ex

0x2E

Xeon™ 7000
Xeon™ 6000

L75xx, E75xx, X75xx
E65xx, X65xx

Penryn

Yorkfield

0x1067x

0x17

Core™ 2 Quad
Core™ 2 Extreme
Xeon™ 3000

Q9xxx, Q8xxx, !9xxxS
QX9xxx
L33xx, X3350

Wolfdale

Celeron™ Desktop
Core™ 2 Duo 
Pentium™
Xeon™ 5000/3000

E3xxx
E7xxx, E8xxx
E5xxx, E6xxx, E6xxxK
L52xx, E31xx

Penryn

Core™ 2 Duo Mobile
Celeron™ M

P7xxx, P9xxx, SL9xxx
722

Harpertown (DP)

Xeon™ 5000

L54xx, E54xx, X54xx

Dunnington (MP)

0x106Dx

0x1D

Xeon™ 7000

L74xx, E74xx, Q7xx

65 nm

Merom

Clovertown

0x006Fx

0x0F

Xeon™ 5000

E53xx, L53xx, X53xx

Kentsfield

Xeon™ 3000
Core™ 2 Quad
Core™ 2 Extreme

X32xx
Q6600
QX6xxx

Conroe

Xeon™ 3000
Pentium™
Core™ 2 Duo
Core™ 2 Extreme
Celeron™ Desktop

30xx
E21xx
E43xx,E6xxx
X6800
E1600

Merom

Core™ 2 Duo M
Pentium™ Mobile
Core™ 2 Extreme M

L7xxx,T5xxx,T7xxx,U7xxx
T3200
X7xxx

Woodcrest

Xeon™ 5000

51xx

Merom
Conroe

0x1066x

0x16

Celeron™ Desktop
Celeron™ Mobile

4xx
5xx

Presler

Cedar Mill

0x0066x

0x0F

0x06

Pentium™ 4

3xx, 6xx

Presler

Pentium™ D

9xx

90 nm

Prescott

Nocona
Irwindale

0x0063x
0x0064x

0x03/
0x04

Xeon™

 

Prescott

Celeron™ D
Pentium™ 4

3xx
5xx

Dothan

Dothan

0x006Dx

0x06

0x0D

Celeron™ M
Pentium™ Mobile

3xx
7xx

Atom™ Architectures and Processors

This table includes the Atom™ processors on 45nm and later process technology. Please read and understand these important disclaimersprior to use.

Process
Technology

Microarchitecture
Codename

Processor
Codename

Platform
Codename

Processor
Signature

Family
Number

Model
Number

Intel® Brand
Name(s)

Intel® Brand
Processor Number

32 nm

Atom™

Cedarview

Cedar Trail

0x0366x

0x06

0x36

Atom™

N2000 series: N26xx, N28xx
D2000 Series: D25xx (no HT), D27xx

45 nm

Lincroft

Oak Trail

0x0266x

0x26

Z6xx (single core)

Pineview

Pine Trail

0x016Cx

0x1C

N4xx, D4xx (single core)
N5xx, D5xx (dual core)

Silverthorne

any

Z5xx

Disclaimers

Information in this article is intended as a convenient summary of the contents of the "Intel® Processor Identification and the CPUID Instruction" application note and the official Intel® product information source.

In case of discrepancy, the information in the original application note and product information source supersede the contents of this article. (Please notify the author of any such discrepancy).

Please consult Section 2: Usage Guidelines of the "Intel® Processor Identification and the CPUID Instruction" for the proper use of CPUID.

Intel® processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details.


All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications, and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the products listed. Please contact system vendor for more information on specific products or systems.



[1]
 For an example of interrogating CPUID to verify features please read Using CPUID to Detect the presence of SSE 4.1 and SSE 4.2 Instruction Sets

[2] In Linux*-based operating systems you can type ‘cat /proc/cpuinfo' to obtain the processor family and model numbers (note they are formatted in decimal, while the tables in this article containhexadecimal formatting of these numbers).

原文地址:https://www.cnblogs.com/baiyw/p/3419528.html