Bounds(包围盒)概述与AABB包围盒应用

Bounds(包围盒)概述与应用

1.包围盒描述(摘至百度百科):

1.1 什么是包围盒?

    包围盒算法是一种求解离散点集最优包围空间的方法。
    基本思想是用体积稍大且特性简单的几何体(称为包围盒)来近似地代替复杂的几何对象。
    最常见的包围盒算法有AABB包围盒(Axis-aligned bounding box),
    包围球(Sphere), 
    方向包围盒OBB(Oriented bounding box)
    以及固定方向凸包FDH(Fixed directions hulls或k-DOP)。

1.2 包围盒的类型:

    1.2.1 AABB包围盒(Axis-aligned bounding box)

        AABB是应用最早的包围盒。它被定义为包含该对象,且边平行于坐标轴的最小六面体
    。故描述一个AABB,仅需六个标量。AABB构造比较简单,存储空间小,但紧密性差,尤其
    对不规则几何形体,冗余空间很大,当对象旋转时,无法对其进行相应的旋转。处理对象
    是刚性并且是凸的,不适合包含软体变形的复杂的虚拟环境情况。
        AABB也是比较简单的一类包围盒。但对于沿斜对角方向放置的瘦长形对象,其紧密性
    较差。由于AABB相交测试的简单性及较好的紧密性,因此得到了广泛的应用,还可以
    用于软体对象的碰撞检测。

    1.2.2 包围球(Sphere)

        包围球被定义为包含该对象的最小的球体。确定包围球,首先需分别计算组成对象的
    基本几何元素集合中所有元素的顶点的x,y,z坐标的均值以确定包围球的球心,再由球心
    与三个最大值坐标所确定的点间的距离确定半径r。包围球的碰撞检测主要是比较两球间半
    径和与球心距离的大小。

    1.2.3 OBB方向包围盒(Oriented bounding box)

        OBB是较为常用的包围盒类型。它是包含该对象且相对于坐标轴方向任意的最小的长方
    体。OBB最大特点是它的方向的任意性,这使得它可以根据被包围对象的形状特点尽可能紧
    密的包围对象,但同时也使得它的相交测试变得复杂。OBB包围盒比AABB包围盒和包围球更
    加紧密地逼近物体,能比较显著地减少包围体的个数,从而避免了大量包围体之间的相交
    检测。但OBB之间的相交检测比AABB或包围球体之间的相交检测更费时。

    1.2.4 FDH固定方向凸包(Fixed directions hulls或k-DOP)

        FDH(k-DOP)是一种特殊的凸包,继承了AABB简单性的特点,但其要具备良好的空间
    紧密度,必须使用足够多的固定方向。被定义为包含该对象且它的所有面的法向量都取自
    一个固定的方向(k个向量)集合的凸包。FDH比其他包围体更紧密地包围原物体,创建的层
    次树也就有更少的节点,求交检测时就会减少更多的冗余计算,但相互间的求交运算较为复杂。

2.AABB包围盒在Unity中的拓展

以下这段代码可以添加到静态类中作为Transform的拓展方法可以直接使用
这段代码可以直接获取模型的包围盒数据,不论是几个层级的模型,都可以直接获取最大的包围盒
详细计算可以见代码,就不详细讲解了,看不懂可私信我

/// <summary>
/// 获取模型包围盒的中心点
/// </summary>
/// <param name="model"></param>
/// <returns></returns>
public static Vector3 CENTER( this Transform model )
{
    Vector3 result = Vector3.zero;
    int counter = 0;
    calculateCenter(model,ref result,ref counter);
    return result / counter;
}


/// <summary>
/// 获取模型包围盒
/// </summary>
/// <param name="model"></param>
/// <returns></returns>
public static Bounds BOUNDS( this Transform model )
{
    Vector3 oldPos = model.position;
    model.position = Vector3.zero;
    Bounds resultBounds = new Bounds(model.CENTER() , Vector3.zero);
    calculateBounds(model , ref resultBounds);
    model.position = oldPos;
    Vector3 scalueValue = scaleValue(model); ;
    resultBounds.size = new Vector3(resultBounds.size.x / scalueValue.x , resultBounds.size.y / scalueValue.y , resultBounds.size.z / scalueValue.z);
    return resultBounds;
}

private static void calculateCenter( Transform model , ref Vector3 result , ref int counter )
{
    if (model.childCount.Equals(0))
    {
        if(!model.GetComponent<Renderer>())
            return;
        result += model.center();
        counter++;
        return;
    }
    List<Transform> childModels = model.GetComponentsInChildrenNoSelf<Transform>();
    for (int i = 0; i < childModels.Count; i++, ++counter)
        calculateCenter(childModels[i] , ref result , ref counter);
}

private static Vector3 scaleValue( Transform model )
{
    Vector3 result = model.localScale;
    return calculateScale(model,ref result);
}

private static Vector3 calculateScale( Transform model ,ref Vector3 value)
{
    if (model.parent)
    {
        Vector3 scale = model.parent.localScale;
        value = new Vector3(value.x * scale.x , value.y * scale.y , value.z * scale.z);
        calculateScale(model.parent,ref value);
    }
    return value;
}

private static void calculateBounds( Transform model , ref Bounds bounds )
{
    if (model.childCount.Equals(0))
    {
        if (!model.GetComponent<Renderer>())
            return;
        bounds.Encapsulate(model.bounds());
        return;
    }
    List<Transform> childModels = model.GetComponentsInChildrenNoSelf<Transform>();
    for (int i = 0; i < childModels.Count; i++)
        calculateBounds(childModels[i],ref bounds);
}

3.例子,关于上面拓展方法的使用

1.添加碰撞器
AddCollider这个拓展方法可以为模型添加一个最大的Box碰撞器,可以在游戏中需要添加碰撞器的地方使用,省去为每一个模型添加碰撞器带来的性能损耗。

public static Bounds AddCollider( this Transform model )
{
    Bounds bounds = model.BOUNDS();
    BoxCollider collider = model.gameObject.AddComponent<BoxCollider>();
    collider.center = bounds.center;
    collider.size = bounds.size;
    return bounds;
}

2.定位模型
在某些设计中可能需要对模型定位,但是每一个模型的位置会因建模带来误差,因此直接利用模型的位置定位的体验很不好,相机的位置和角度都不好固定,这里我们就可以用包围盒来定位,计算出包围盒,我们可以得到包围盒上的很多点位置,可以利用这些点固定相机的位置,角度也可以利用朝向包围盒的中心来固定

public static void SetPosition()
{
    //todo 详细的定位代码在理解以上内容之后根据自己的需求编写
    //todo 比如你可以把相机的位置固定在上下左右,以及包围盒八个顶点
}

3.更多其他方法...

原文连接:https://blog.csdn.net/qq_29579137/article/details/70502591

原文地址:https://www.cnblogs.com/atong/p/14092131.html