ACM学习历程—HDU4746 Mophues(莫比乌斯)

Description

As we know, any positive integer C ( C >= 2 ) can be written as the multiply of some prime numbers: 
    C = p1×p2× p3× ... × pk 
which p1, p2 ... pk are all prime numbers.For example, if C = 24, then: 
    24 = 2 × 2 × 2 × 3 
    here, p1 = p2 = p3 = 2, p4 = 3, k = 4 

Given two integers P and C. if k<=P( k is the number of C's prime factors), we call C a lucky number of P. 

Now, XXX needs to count the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of a given P ( "gcd" means "greatest common divisor"). 

Please note that we define 1 as lucky number of any non-negative integers because 1 has no prime factor.

 

Input

The first line of input is an integer Q meaning that there are Q test cases. 
Then Q lines follow, each line is a test case and each test case contains three non-negative numbers: n, m and P (n, m, P <= 5×10 5. Q <=5000).

 

Output

For each test case, print the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of P.

 

Sample Input

2

10 10 0

10 10 1

 

Sample Output

63

93

 

 

题目大意就是求k <= p,满足gcd(x, y) == k的对数。

首先可以预处理出任意数i其质因子个数luck[i]。

这个的话可以初始化luck[1] = 0,然后类似于bfs的过程,把当前i能到达的状态prime*i标记,即luck[prime*i] = luck[i]+1。然后用vis数组来避免重复标记。

然后就是根据莫比乌斯,之前写过类似的题解,结论就是gcd(x, y) == k的对数f(k)满足:

f(k) = sum(u(j/k)*(m/j)*(n/j)) (k | j)

这样对于满足的k,就是上式的k求和,之前也说过sum(sum(u(j/k)*(m/j)*(n/j)) (k | j))中两个sum的次序可以进行交换的。因为一个k对应好多j,等同于一个j对应好多k。

这样就是求满足条件的k的sum((m/j)*(n/j)*sum(u(j/k))) (k | j)

这样可以预先处理出所有j对应的sum(u(j/k)),

但是还不够,这样对于重复的p,会重复计算,这样需要多开一维sum(p, u(j/k))表示满足p条件下的sum,相当于把所有情况的sum离线下来。这样做主要的前提是p很小,因为5*10^5内质因子的个数最多有log2(5*10^5)个,大约18个。

在求sum[p][j]时,可以先计算出gcd(x, y) = p的情况,然后求前缀和就是gcd(x, y) <= p的情况了。

不过这题到这里为止还没有结束。。。

预处理复杂度能过去,不过后面的数据规模比较大,O(n)时间内过不去。

需要对上述答案进行分组加速。

因为对于n/j来说,必然会存在一种情况,n/j == n/(j+1) = …..

就是连续的几个j的结果一致,因为这里的除法取的是下整。

这样的话,若n/j == p,

那么p*j <= n < (p+1)*j

如果x也满足n/j == n/x == p

那么自然p*x <= n < (p+1)*x

于是x <= n/p。

也就是x最大可以取n/p,由于取的是下整,可以放心取等号。

那么从j到n/(n/j)区间内的n/j的结果都是一致的。然后j到m/(m/j)的m/j的结果又是一致的。

自然从j到min(n/(n/j), m/(m/j))内(n/j)*(m/j)的结果一致。

那么这一段应该直接计算sum[p](j~ min(n/(n/j), m/(m/j)))* (n/j)*(m/j),然后可以事先对sum[p][j]求和,就可以通过作差求出前半段。

最后需要注意的一点是当p >= log2(len)时,所有(x, y)对就都能满足条件了,答案自然是m*n。

 

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <queue>
#define LL long long

using namespace std;

const int maxN = 500010;
int n, m, p;
int luck[maxN], sum[20][maxN];
int prime[maxN], cnt, u[maxN];
bool vis[maxN];

void mobius()
{
    memset(vis, false,sizeof(vis));
    u[1] = 1;
    cnt = 0;
    for(int i = 2; i < maxN; i++)
    {
        if(!vis[i])
        {
            prime[cnt++] = i;
            u[i] = -1;
        }
        for(int j = 0; j < cnt && i*prime[j] < maxN; j++)
        {
            vis[i*prime[j]] = true;
            if(i%prime[j])
                u[i*prime[j]] = -u[i];
            else
            {
                u[i*prime[j]] = 0;
                break;
            }
        }
    }
}

void calLuck()
{
    memset(vis, false, sizeof(vis));
    luck[1] = 0;
    queue<int> q;
    q.push(1);
    vis[1] = true;
    int k, v;
    while (!q.empty())
    {
        k = q.front();
        q.pop();
        for (int i = 0; i < cnt; ++i)
        {
            if ((LL)prime[i]*k >= maxN)
                break;
            v = prime[i]*k;
            if (!vis[v])
            {
                luck[v] = luck[k]+1;
                q.push(v);
                vis[v] = true;
            }
        }
    }
}

void init()
{
    mobius();
    calLuck();
    memset(sum, false, sizeof(sum));
    //计算sum[p][j]的值,gcd个数为p的i的倍数j系数的总和
    for (int i = 1; i < maxN; ++i)
    {
        for (LL j = i; j < maxN; j += i)
            sum[luck[i]][j] += u[j/i];
    }
    //计算sum[p][j]的值,gcd个数小于等于p的i的倍数j系数的总和
    for (int i = 1; i < maxN; ++i)
    {
        for (int k = 1; k < 20; ++k)
            sum[k][i] += sum[k-1][i];
    }
    //计算sum[p][j]的j前缀和,用于分组加速
    for (int k = 0; k < 20; ++k)
        for (int i = 1; i < maxN; ++i)
            sum[k][i] += sum[k][i-1];
}

void work()
{
    int len = min(m, n);
    if (p >= log2(len))
    {
        printf("%I64d
", (LL)m*n);
        return;
    }
    LL ans = 0;
    for (int i = 1, j; i <= len; i = j+1)
    {
        j = min(n/(n/i), m/(m/i));
        ans += (LL)(sum[p][j]-sum[p][i-1])*(m/i)*(n/i);
    }
    printf("%I64d
", ans);
}

int main()
{
    //freopen("test.in", "r", stdin);
    init();
    int T;
    scanf("%d", &T);
    for (int times = 1; times <= T; ++times)
    {
        scanf("%d%d%d", &n, &m, &p);
        work();
    }
    return 0;
}
原文地址:https://www.cnblogs.com/andyqsmart/p/4865283.html