几乎必然收敛的含义

1 几乎必然收敛的概念

几乎必然收敛(almost sure convergence),又叫以概率1收敛(convergence with probability 1),定义为:随机变量序列\(\{X_n\}\)满足

\[\mathbf{P}(\lim_{n\to \infty} X_n\to X)=1 \]

\(X_n\xrightarrow{\text{a. s. }}X\)

它的等价条件有很多,比如:

\[\mathbf{P}(\lim_{n\to \infty} |X_n-X|<\varepsilon)=1 \]

\[\forall \varepsilon>0, \mathbf{P}(\limsup_{n\to \infty} |X_n-X|>\varepsilon)=0 \]

上式又可用“不时发生”(infinitely often)的概念,写为

\[\forall \varepsilon>0, \mathbf{P}(|X_n-X|>\varepsilon, \text{i. o. })=0 \]

上式如何理解?可从\(\cup_{n=m}^{\infty}\{|X_n-X|>\varepsilon\}\)入手,它表示给定\(m\)后,使\(|X_n-X|>\varepsilon\)\(n\geq m\))至少发生一次的\(\omega\)的集合。而如果不管给定的\(m\)有多大,在有些\(\omega\)上,\(|X_n-X|>\varepsilon\)\(n\geq m\))都会至少发生一次,这些\(\omega\)的集合就是“不时发生”的概念:

\[\begin{aligned} & \left\{|X_n-X|>\varepsilon, \text{i. o. }\right\}\\ =& \cap_{m=1}^{\infty} \cup_{n=m}^{\infty} \left\{|X_n-X|>\varepsilon\right\}\\ =& \limsup_{n\to\infty} \left\{|X_n-X|>\varepsilon\right\} \end{aligned} \]

因此,几乎必然收敛可表示为

\[\begin{aligned} 0 =& \mathbf{P}\left(\left\{|X_n-X|>\varepsilon, \text{i. o. }\right\}\right)\\ =& \mathbf{P}(\cap_{m=1}^{\infty} \cup_{n=m}^{\infty} \left\{|X_n-X|>\varepsilon\right\})\\ =& \mathbf{P}(\limsup_{n\to\infty} \left\{|X_n-X|>\varepsilon\right\}) \end{aligned} \]

再介绍一个定理:设\(\{E_n\in\mathcal{F}\}\)为任意序列,则

  • \(\mathbf{P}(\limsup_{n\to \infty} E_n)=\lim\limits_{n\to\infty}\mathbf{P}(\cup_{m=n}^{\infty} E_m)\)
  • \(\mathbf{P}(\liminf_{n\to \infty} E_n)=\lim\limits_{n\to\infty}\mathbf{P}(\cap_{m=n}^{\infty} E_m)\).

2 Borel-Cantelli引理

Borel-Cantelli引理是证明几乎必然收敛时用到最多的工具之一。引理分为两部分,一是收敛部分,讲收敛所需的充分条件,二是发散(divergence)部分,讲收敛所需的必要条件,即序列的独立性。

Borel-Cantelli引理:

  1. 对于任意一个事件序列\(\{E_n\in\mathcal{F}\}\),若\(\sum\limits_{n=1}^{\infty}\mathbf{P}(E_n)<\infty\),则\(\mathbf{P}(E_n, \text{i. o. })=0\)
  2. 对于独立事件的序列\(\{E_n\in\mathcal{F}\}\),若\(\sum\limits_{n=1}^{\infty}\mathbf{P}(E_n)=\infty\),则\(\mathbf{P}(E_n, \text{i. o. })=1\).
原文地址:https://www.cnblogs.com/analysis101/p/14664853.html