3行GCD和3行EXGCD算法模板 附证明

转自 http://blog.csdn.net/xiaofengsheng/article/details/4813170


欧几里德算法

  欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
  定理:gcd(a,b) = gcd(b,a mod b)
  证明:a可以表示成a = kb + r,则r = a mod b
  假设d是a,b的一个公约数,则有
  d|a, d|b,而r = a - kb,因此d|r
  因此d是(b,a mod b)的公约数
  假设d 是(b,a mod b)的公约数,则
  d | b , d |r ,但是a = kb +r
  因此d也是(a,b)的公约数
  因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证
  欧几里德算法就是根据这个原理来做的,其算法用C++语言描述为:
  int Gcd(int a, int b)
  {
  if(b == 0)
  return a;
  return Gcd(b, a % b);
  }
  当然你也可以写成迭代形式:
  int Gcd(int a, int b)
  {
  while(b != 0)
  {
  int r = b;
  b = a % b;
  a = r;
  }
  return a;
  }
  本质上都是用的上面那个原理。

扩展欧几里德算法


  扩展欧几里德算法是用来在已知a, b求解一组p,q使得p * a+q * b = Gcd(a, b) (解一定存在,根据数论中的相关定理)。

     算法描述为:

  int exGcd(int a, int b, int &x, int &y)
  {
  if(b == 0)
  {
  x = 1;
  y = 0;
  return a;
  }
  int r = exGcd(b, a % b, x, y);
  int t = x;
  x = y;
  y = t - a / b * y;
  return r;
  }
  把这个实现和Gcd的递归实现相比,发现多了下面的x,y赋值过程,这就是扩展欧几里德算法的精髓。
  可以这样思考:
  对于a' = b, b' = a % b 而言,我们求得 x, y使得 a'x + b'y = Gcd(a', b')
  由于b' = a % b = a - a / b * b (注:这里的/是程序设计语言中的除法)
  那么可以得到:
  a'x + b'y = Gcd(a', b') ===>
  bx + (a - a / b * b)y = Gcd(a', b') = Gcd(a, b) ===>
  ay +b(x - a / b*y) = Gcd(a, b)
  因此对于a和b而言,他们的相对应的p,q分别是 y和(x-a/b*y)。

解释的非常好。附3行的gcd和3行的exgcd:

inline int gcd(int a,int b){

int t;

while(t=a%b) a=b,b=t;

return b;}

 

inline int exgcd(int a,int b,int &x,int &y){

if(!b) return x=1,y=0,a;

int r=exgcd(b,a%b,x,y),t=x;

return x=y,y=t-a/b*y,r;}

原文地址:https://www.cnblogs.com/acplayfacm/p/3864843.html