51nod1237 最大公约数之和 V3

题意:(sum_{i=1}^nsum_{j=1}^ngcd(i,j))
题解:先枚举gcd,(sum_{d=1}^nsum_{i=1}^{lfloor frac{n}{d} floor}sum_{j=1}^{lfloor frac{n}{d} floor}[(i,j)=1])
考虑到后半部分是最常见的莫比乌斯反演,有(sum_{d=1}^nsum_{x=1}^{lfloor frac{n}{d} floor}mu(x)*{lfloor frac{n}{d*x} floor}^2)
枚举dx=t,(=sum_{t=1}^n{lfloor frac{n}{t} floor}^2sum_{d|n}d*mu(frac{t}{d}))
由于(id=I*phi),反演后(phi=id*mu),(sum_{t=1}^n{lfloor frac{n}{t} floor}^2*phi(t))
最后就是分块+杜教筛phi

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}

using namespace std;

const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=5000000+10,maxn=3000000+10,inf=0x3f3f3f3f;

int prime[N],cnt;
ll phi[N],inv2=qp(2,mod-2);
bool mark[N];
map<ll,ll>phii;
void init()
{
    phi[1]=1;
    for(int i=2;i<N;i++)
    {
        if(!mark[i])prime[++cnt]=i,phi[i]=i-1;
        for(int j=1;j<=cnt&&i*prime[j]<N;j++)
        {
            mark[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
    for(int i=1;i<N;i++)
    {
        phi[i]%=mod;
        add(phi[i],phi[i-1]);
    }
}
ll getphi(ll n)
{
    if(n<N)return phi[n];
    if(phii.find(n)!=phii.end())return phii[n];
    ll ans=n%mod*(n%mod+1)%mod*inv2%mod;
    for(ll i=2,j;i<=n;i=j+1)
    {
        j=n/(n/i);
        sub(ans,1ll*(j-i+1)%mod*getphi(n/i)%mod);
    }
    return phii[n]=ans;
}
int main()
{
    init();
    ll n,ans=0;scanf("%lld",&n);
    for(ll i=1,j;i<=n;i=j+1)
    {
        j=n/(n/i);
        ll te=(n/i)%mod;te=te*te%mod;
        ll p=getphi(j)-getphi(i-1);p=(p%mod+mod)%mod;
        add(ans,te*p%mod);
    }
    printf("%lld
",ans);
    return 0;
}
/********************

********************/
原文地址:https://www.cnblogs.com/acjiumeng/p/9742141.html