C++ 对象的内存布局(下)---陈皓改进版

修正了一些原文中的错误。

续接:C++ 对象的内存布局(上)---陈皓改进版

重复继承

下面我们再来看看,发生重复继承的情况。所谓重复继承,也就是某个基类被间接地重复继承了多次。

下图是一个继承图,我们重载了父类的f()函数。


 

其类继承的源代码如下所示。其中,每个类都有两个变量,一个是整形(4字节),一个是字符(1字节),而且还有自己的虚函数,自己overwrite父类的虚函数。如子类D中,f()覆盖了超类的函数, f1() 和f2() 覆盖了其父类的虚函数,Df()为自己的虚函数。

#include <iostream>
using namespace std;

class B
{
public:
	int ib;
	char cb;
public:
	B() :ib(0), cb('B') {}
	virtual void f() { cout << "B::f()" << endl; }
	virtual void Bf() { cout << "B::Bf()" << endl; }
};

class B1 : public B
{
public:
	int ib1;
	char cb1;
public:
	B1() :ib1(11), cb1('1') {}
	virtual void f() { cout << "B1::f()" << endl; }
	virtual void f1() { cout << "B1::f1()" << endl; }
	virtual void Bf1() { cout << "B1::Bf1()" << endl; }
};

class B2 : public B
{
public:
	int ib2;
	char cb2;
public:
	B2() :ib2(12), cb2('2') {}
	virtual void f() { cout << "B2::f()" << endl; }
	virtual void f2() { cout << "B2::f2()" << endl; }
	virtual void Bf2() { cout << "B2::Bf2()" << endl; }
};

class D : public B1, public B2
{
public:
	int id;
	char cd;
public:
	D() :id(100), cd('D') {}
	virtual void f() { cout << "D::f()" << endl; }
	virtual void f1() { cout << "D::f1()" << endl; }
	virtual void f2() { cout << "D::f2()" << endl; }
	virtual void Df() { cout << "D::Df()" << endl; }
};

我们用来存取子类内存布局的代码如下所示:(在VC++ 2003和G++ 3.4.4下)

int main()
{
	typedef void(*Fun)(void);
	int** pVtab = NULL;
	Fun pFun = NULL;
	D d;
	pVtab = (int**)&d;
	cout << "[0] D::B1::_vptr->" << endl;
	pFun = (Fun)pVtab[0][0];
	cout << "     [0] ";    pFun();
	pFun = (Fun)pVtab[0][1];
	cout << "     [1] ";    pFun();
	pFun = (Fun)pVtab[0][2];
	cout << "     [2] ";    pFun();
	pFun = (Fun)pVtab[0][3];
	cout << "     [3] ";    pFun();
	pFun = (Fun)pVtab[0][4];
	cout << "     [4] ";    pFun();
	pFun = (Fun)pVtab[0][5];
	cout << "     [5] 0x" << pFun << endl;
	cout << "[1] B::ib = " << (int)pVtab[1] << endl;
	cout << "[2] B::cb = " << (char)pVtab[2] << endl;
	cout << "[3] B1::ib1 = " << (int)pVtab[3] << endl;
	cout << "[4] B1::cb1 = " << (char)pVtab[4] << endl;
	cout << "[5] D::B2::_vptr->" << endl;
	pFun = (Fun)pVtab[5][0];
	cout << "     [0] ";    pFun();
	pFun = (Fun)pVtab[5][1];
	cout << "     [1] ";    pFun();
	pFun = (Fun)pVtab[5][2];
	cout << "     [2] ";    pFun();
	pFun = (Fun)pVtab[5][3];
	cout << "     [3] ";    pFun();
	pFun = (Fun)pVtab[5][4];
	cout << "     [4] 0x" << pFun << endl;
	cout << "[6] B::ib = " << (int)pVtab[6] << endl;
	cout << "[7] B::cb = " << (char)pVtab[7] << endl;
	cout << "[8] B2::ib2 = " << (int)pVtab[8] << endl;
	cout << "[9] B2::cb2 = " << (char)pVtab[9] << endl;
	cout << "[10] D::id = " << (int)pVtab[10] << endl;
	cout << "[11] D::cd = " << (char)pVtab[11] << endl;

	return 0;
}

   程序运行结果如下:

GCC 3.4.4

 

VC++ 2003

 

[0] D::B1::_vptr->

 

     [0] D::f()

 

     [1] B::Bf()

 

     [2] D::f1()

 

     [3] B1::Bf1()

 

     [4] D::f2()

 

     [5] 0x1

 

[1] B::ib = 0

 

[2] B::cb = B

 

[3] B1::ib1 = 11

 

[4] B1::cb1 = 1

 

[5] D::B2::_vptr->

 

     [0] D::f()

 

     [1] B::Bf()

 

     [2] D::f2()

 

     [3] B2::Bf2()

 

     [4] 0x0

 

[6] B::ib = 0

 

[7] B::cb = B

 

[8] B2::ib2 = 12

 

[9] B2::cb2 = 2

 

[10] D::id = 100

 

[11] D::cd = D

 

[0] D::B1::_vptr->

 

     [0] D::f()

 

     [1] B::Bf()

 

     [2] D::f1()

 

     [3] B1::Bf1()

 

     [4] D::Df()

 

     [5] 0x00000000

 

[1] B::ib = 0

 

[2] B::cb = B

 

[3] B1::ib1 = 11

 

[4] B1::cb1 = 1

 

[5] D::B2::_vptr->

 

     [0] D::f()

 

     [1] B::Bf()

 

     [2] D::f2()

 

     [3] B2::Bf2()

 

     [4] 0x00000000

 

[6] B::ib = 0

 

[7] B::cb = B

 

[8] B2::ib2 = 12

 

[9] B2::cb2 = 2

 

[10] D::id = 100

 

[11] D::cd = D

 

 

下面是对于子类实例中的虚函数表的图:

 

我们可以看见,最顶端的父类B其成员变量存在于B1和B2中,并被D给继承下去了。而在D中,其有B1和B2的实例,于是B的成员在D的实例中存在两份,一份是B1继承而来的,另一份是B2继承而来的。所以,如果我们使用以下语句,则会产生二义性编译错误: 

D d;

d.ib = 0;               //二义性错误

d.B1::ib = 1;           //正确

d.B2::ib = 2;           //正确

注意,上面例程中的最后两条语句存取的是两个变量。虽然我们消除了二义性的编译错误,但B类在D中还是有两个实例,这种继承造成了数据的重复,我们叫这种继承为重复继承。重复的基类数据成员可能并不是我们想要的。所以,C++引入了虚基类的概念。

钻石型多重虚拟继承

虚拟继承的出现就是为了解决重复继承中多个间接父类的问题的。钻石型的结构是其最经典的结构。也是我们在这里要讨论的结构:

上述的“重复继承”只需要把B1和B2继承B的语法中加上virtual 关键,就成了虚拟继承,其继承图如下所示:


 

上图和前面的“重复继承”中的类的内部数据和接口都是完全一样的,只是我们采用了虚拟继承:其省略后的源码如下所示:

class B {……};

class B1 : virtual public B{……};

class B2: virtual public B{……};

class D : public B1, public B2{ …… }; 

在查看D之前,我们先看一看单一虚拟继承的情况。下面是一段在VC++2003下的测试程序:(因为VC++和GCC的内存而局上有一些细节上的不同,所以这里只给出VC++的程序,GCC下的程序大家可以根据我给出的程序自己仿照着写一个去试一试):

在VS2015因为vtordisp和cout改变ecx值。

pFun = (Fun)pVtab[5][0]; 
    cout << "     [0] ";  // 此行会改变ecx值,而ecx就是this指针,所以下面一行调用会报错。
    pFun(); //B1::f();   // vtordisp应该有关系。

解决方案:只要保证取得地址之后立刻调用pFun()就没问题,即:

pFun = (Fun)pVtab[5][0]; pFun(); 

MSDN给出的解释是:虚继承中派生类重写了基类的虚函数,并且在构造函数或者析构函数中使用指向基类的指针调用了该函数,编译器会为虚基类添加vtordisp

#include <iostream>
using namespace std;


class B
{
public:
	int ib;
	char cb;
public:
	B() :ib(0), cb('B') {}
	virtual void f() { cout << "B::f()" << endl; }
	virtual void Bf() { cout << "B::Bf()" << endl; }
};

class B1 : virtual public B
{
public:
	int ib1;
	char cb1;
public:
	B1() :ib1(11), cb1('1') {}
	virtual void f() { cout << "B1::f()" << endl; }
	virtual void f1() { cout << "B1::f1()" << endl; }
	virtual void Bf1() { cout << "B1::Bf1()" << endl; }
};


int main()
{
	typedef void(*Fun)(void);
	int** pVtab = NULL;
	Fun pFun = NULL;
	B1 bb1;
	pVtab = (int**)&bb1;
	cout << "[0] B1::_vptr->" << endl;
	pFun = (Fun)pVtab[0][0];
	cout << "     [0] ";
	pFun(); //B1::f1();
	cout << "     [1] ";
	pFun = (Fun)pVtab[0][1];
	pFun(); //B1::bf1();
	cout << "     [2] ";
	cout << pVtab[0][2] << endl;
	cout << "[1] = 0x";
	cout << (int*)*((int*)(&bb1) + 1) << endl; //偏移指针vbptr的值
	cout << *(int*)*((int*)(&bb1) + 1) << endl; // 偏移指针vbptr指向的值,为-4
	cout << "[2] B1::ib1 = ";
	cout << (int)*((int*)(&bb1) + 2) << endl; //B1::ib1
	cout << "[3] B1::cb1 = ";
	cout << (char)*((int*)(&bb1) + 3) << endl; //B1::cb1
	cout << "[4] = 0x";
	cout << (int*)*((int*)(&bb1) + 4) << endl; //为0, vtordisp字段一直存储为0
	cout << "[5] B::_vptr->" << endl;

    /* 解决方案:只要保证取得地址之后立刻调用pFun()就没问题,即:

    pFun = (Fun)pVtab[5][0]; pFun(); */

	pFun = (Fun)pVtab[5][0]; 
	cout << "     [0] ";  // 此行会改变ecx值,而ecx就是this指针,所以下面一行调用会报错。
	pFun(); //B1::f();   // vtordisp应该也有关系。
	pFun = (Fun)pVtab[5][1];
	cout << "     [1] ";
	pFun(); //B::Bf();
	cout << "     [2] ";
	cout << "0x" << (Fun)pVtab[5][2] << endl;
	cout << "[6] B::ib = ";
	cout << (int)*((int*)(&bb1) + 6) << endl; //B::ib
	cout << "[7] B::cb = ";
	cout << (char)*((int*)(&bb1) + 7) << endl; //B::cb

	return 0;
}

  其运行结果如下(我结出了GCC的和VC++2003的对比):

GCC 3.4.4

 

VC++ 2003

 

[0] B1::_vptr ->

 

    [0] : B1::f()

 

    [1] : B1::f1()

 

    [2] : B1::Bf1()

 

    [3] : 0

 

[1] B1::ib1 : 11

 

[2] B1::cb1 : 1

 

[3] B::_vptr ->

 

    [0] : B1::f()

 

    [1] : B::Bf()

 

    [2] : 0

 

[4] B::ib : 0

 

[5] B::cb : B

 

[6] NULL : 0

 

[0] B1::_vptr->

 

     [0] B1::f1()

 

     [1] B1::Bf1()

 

     [2] 0

 

[1] = 0x00454310 ç该地址取值后是-4

 

[2] B1::ib1 = 11

 

[3] B1::cb1 = 1

 

[4] = 0x00000000

 

[5] B::_vptr->

 

     [0] B1::f()

 

     [1] B::Bf()

 

     [2] 0x00000000

 

[6] B::ib = 0

 

[7] B::cb = B

 

这里,大家可以自己对比一下。关于细节上,我会在后面一并再说。

VS2015下类B1的内存布局如下:

 

 

#pragma vtordisp(off) 可关闭vtordisp,VS2015修改后代码如下:

#include <iostream>
using namespace std;

#pragma vtordisp(off)   //关闭vtordisp

class B
{
public:
	int ib;
	char cb;
public:
	B() :ib(0), cb('B') {}
	virtual void f() { cout << "B::f()" << endl; }
	virtual void Bf() { cout << "B::Bf()" << endl; }
};

class B1 : virtual public B
{
public:
	int ib1;
	char cb1;
public:
	B1() :ib1(11), cb1('1') {}
	virtual void f() { cout << "B1::f()" << endl; }
	virtual void f1() { cout << "B1::f1()" << endl; }
	virtual void Bf1() { cout << "B1::Bf1()" << endl; }
};


int main()
{
	typedef void(*Fun)(void);
	int** pVtab = NULL;
	Fun pFun = NULL;
	B1 bb1;
	pVtab = (int**)&bb1;
	cout << "[0] B1::_vptr->" << endl;
	pFun = (Fun)pVtab[0][0];
	cout << "     [0] ";
	pFun(); //B1::f1();
	cout << "     [1] ";
	pFun = (Fun)pVtab[0][1];
	pFun(); //B1::bf1();
	cout << "     [2] ";
	cout << pVtab[0][2] << endl;
	cout << "[1] = 0x";
	cout << (int*)*((int*)(&bb1) + 1) << endl; //偏移指针vbptr的值
	cout << *(int*)*((int*)(&bb1) + 1) << endl; //偏移指针vbptr指向的值,为-4
	cout << "[2] B1::ib1 = ";
	cout << (int)*((int*)(&bb1) + 2) << endl; //B1::ib1
	cout << "[3] B1::cb1 = ";
	cout << (char)*((int*)(&bb1) + 3) << endl; //B1::cb1
	
	cout << "[4] B::_vptr->" << endl;
	pFun = (Fun)pVtab[4][0]; 
	cout << "     [0] ";
	pFun(); //B1::f();  
	pFun = (Fun)pVtab[4][1];
	cout << "     [1] ";
	pFun(); //B::Bf();
	cout << "     [2] ";
	cout << "0x" << (Fun)pVtab[4][2] << endl;
	cout << "[5] B::ib = ";
	cout << (int)*((int*)(&bb1) + 5) << endl; //B::ib
	cout << "[6] B::cb = ";
	cout << (char)*((int*)(&bb1) + 6) << endl; //B::cb

	return 0;
}

 输出:

VS2015下类B1的内存布局如下:

 

补充:

子类没有覆盖(重写)且没有新增虚函数:

#include <iostream>
using namespace std;

class B
{
public:
	int ib;
	char cb;
public:
	B() :ib(0), cb('B') {}
	virtual void f() { cout << "B::f()" << endl; }
	virtual void Bf() { cout << "B::Bf()" << endl; }
};

class B1 : virtual public B
{
public:
	int ib1;
	char cb1;
public:
	B1() :ib1(11), cb1('1') {}
    /* 子类无虚函数 */
	//virtual void f() { cout << "B1::f()" << endl; }
	//virtual void f1() { cout << "B1::f1()" << endl; }
	//virtual void Bf1() { cout << "B1::Bf1()" << endl; }
};


int main()
{
	B1 bb1;
	return 0;
}

类B1内存布局为:

子类有覆盖(重写)且没有新增虚函数:

#include <iostream>
using namespace std;

class B
{
public:
	int ib;
	char cb;
public:
	B() :ib(0), cb('B') {}
	virtual void f() { cout << "B::f()" << endl; }
	virtual void Bf() { cout << "B::Bf()" << endl; }
};

class B1 : virtual public B
{
public:
	int ib1;
	char cb1;
public:
	B1() :ib1(11), cb1('1') {}
	virtual void f() { cout << "B1::f()" << endl; }  //子类有覆盖(重写)且没有新增虚函数
	//virtual void f1() { cout << "B1::f1()" << endl; }
	//virtual void Bf1() { cout << "B1::Bf1()" << endl; }
};


int main()
{
	B1 bb1;
	return 0;
}

类B1内存布局为:

总结:(注:下面讨论的基类A就是代码中类B,子类B就是代码中B1

子类有覆盖(重写)且没有新增虚函数 and 子类没有覆盖(重写)且没有新增虚函数:这两种情况并没有太大差别,唯一的区别就是基类A的虚表指针指向的虚表有没有被重写而已,对于B对象模型都是下面这种:

而对于有新增虚函数这种情况:

#include <iostream>
using namespace std;

class B
{
public:
	int ib;
	char cb;
public:
	B() :ib(0), cb('B') {}
	virtual void f() { cout << "B::f()" << endl; }
	virtual void Bf() { cout << "B::Bf()" << endl; }
};

class B1 : virtual public B
{
public:
	int ib1;
	char cb1;
public:
	B1() :ib1(11), cb1('1') {}
	virtual void f() { cout << "B1::f()" << endl; } 
	virtual void f1() { cout << "B1::f1()" << endl; }
	virtual void Bf1() { cout << "B1::Bf1()" << endl; }
};


int main()
{
	B1 bb1;
	return 0;
}

内存布局如下:

对于B的对象模型则是这样的:

因为有新增新的虚函数了,所以子类需要额外加一个虚表指针。

虚拟多继承

#include <iostream>
using namespace std;

class Base1 {
public:
	int ibase1;
	Base1() :ibase1(10) {}
	virtual void f() { cout << "Base1::f()" << endl; }
	virtual void g() { cout << "Base1::g()" << endl; }
	virtual void h() { cout << "Base1::h()" << endl; }
};

class Base2 {
public:
	int ibase2;
	Base2() :ibase2(20) {}
	virtual void f() { cout << "Base2::f()" << endl; }
	virtual void g() { cout << "Base2::g()" << endl; }
	virtual void h() { cout << "Base2::h()" << endl; }
};

class Base3 {
public:
	int ibase3;
	Base3() :ibase3(30) {}
	virtual void f() { cout << "Base3::f()" << endl; }
	virtual void g() { cout << "Base3::g()" << endl; }
	virtual void h() { cout << "Base3::h()" << endl; }
};

class Derive : virtual public Base1, virtual public Base2, virtual public Base3 {
public:
	int ibase1;
	int iderive;
	Derive() :iderive(100) {}
	virtual void f() { cout << "Derive::f()" << endl; }
	virtual void g1() { cout << "Derive::g1()" << endl; }
};


int main()
{
	Derive d;
	Base3 *p = &d;
	d.f();  // OK
	d.g1(); // OK
	// d.g(); 不明确报错
	// d.h(); 不明确报错

	return 0;
}

Derive类的内存布局为:

d.g(); 和d.h(); 由于不明确报错。

 

钻石型虚拟多重继承

下面的测试程序是看子类D的内存布局,同样是VC++ 2003的(因为VC++和GCC的内存布局上有一些细节上的不同,而VC++的相对要清楚很多,所以这里只给出VC++的程序,GCC下的程序大家可以根据我给出的程序自己仿照着写一个去试一试):

作者源代码:

在VS2015因为vtordisp和cout改变ecx值。

pFun = (Fun)pVtab[11][0]; 
    cout << "     [0] ";  // 此行会改变ecx值,而ecx就是this指针,所以下面一行调用会报错。
    pFun(); //D::f();   // vtordisp应该有关系。

解决方案:只要保证取得地址之后立刻调用pFun()就没问题,即:

pFun = (Fun)pVtab[11][0]; pFun(); 

MSDN给出的解释是:虚继承中派生类重写了基类的虚函数,并且在构造函数或者析构函数中使用指向基类的指针调用了该函数,编译器会为虚基类添加vtordisp

#include <iostream>
using namespace std;

class B
{
public:
	int ib;
	char cb;
public:
	B() :ib(0), cb('B') {}
	virtual void f() { cout << "B::f()" << endl; }
	virtual void Bf() { cout << "B::Bf()" << endl; }
};

class B1 : virtual public B
{
public:
	int ib1;
	char cb1;
public:
	B1() :ib1(11), cb1('1') {}
	virtual void f() { cout << "B1::f()" << endl; }
	virtual void f1() { cout << "B1::f1()" << endl; }
	virtual void Bf1() { cout << "B1::Bf1()" << endl; }
};

class B2 : virtual public B
{
public:
	int ib2;
	char cb2;
public:
	B2() :ib2(12), cb2('2') {}
	virtual void f() { cout << "B2::f()" << endl; }
	virtual void f2() { cout << "B2::f2()" << endl; }
	virtual void Bf2() { cout << "B2::Bf2()" << endl; }
};

class D : public B1, public B2
{
public:
	int id;
	char cd;
public:
	D() :id(100), cd('D') {}
	virtual void f() { cout << "D::f()" << endl; }
	virtual void f1() { cout << "D::f1()" << endl; }
	virtual void f2() { cout << "D::f2()" << endl; }
	virtual void Df() { cout << "D::Df()" << endl; }
};


int main()
{
	typedef void(*Fun)(void);
	int** pVtab = NULL;
	Fun pFun = NULL;
	D dd;
	
	pVtab = (int**)&dd;
	cout << "[0] D::B1::_vptr->" << endl;
	pFun = (Fun)pVtab[0][0];

	cout << "     [0] ";    pFun(); //D::f1();
	pFun = (Fun)pVtab[0][1];
	cout << "     [1] ";    pFun(); //B1::Bf1();
	pFun = (Fun)pVtab[0][2];
	cout << "     [2] ";    pFun(); //D::Df();
	pFun = (Fun)pVtab[0][3];
	cout << "     [3] ";
	cout << pFun << endl;
	//cout << pVtab[4][2] << endl;
	cout << "[1] = 0x";
	cout << (int*)*((int*)(&dd) + 1) << endl;  // 偏移指针vbptr的值
	cout << *(int*)*((int*)(&dd) + 1) << endl; // 偏移指针vbptr指向的值,为-4

	cout << "[2] B1::ib1 = ";
	cout << *((int*)(&dd) + 2) << endl; //B1::ib1
	cout << "[3] B1::cb1 = ";
	cout << (char)*((int*)(&dd) + 3) << endl; //B1::cb1										  //------------------
	cout << "[4] D::B2::_vptr->" << endl;

	pFun = (Fun)pVtab[4][0];
	cout << "     [0] ";    pFun(); //D::f2();
	pFun = (Fun)pVtab[4][1];
	cout << "     [1] ";    pFun(); //B2::Bf2();
	pFun = (Fun)pVtab[4][2];
	cout << "     [2] ";
	cout << pFun << endl;

	cout << "[5] = 0x";
	cout << (int*)*((int*)(&dd) + 5) << endl;  // 偏移指针vbptr的值
	cout << *(int*)*((int*)(&dd) + 5) << endl; // 偏移指针vbptr指向的值,为-4

	cout << "[6] B2::ib2 = ";
	cout << (int)*((int*)(&dd) + 6) << endl; //B2::ib2
	cout << "[7] B2::cb2 = ";
	cout << (char)*((int*)(&dd) + 7) << endl; //B2::cb2
	cout << "[8] D::id = ";
	cout << *((int*)(&dd) + 8) << endl; //D::id
	cout << "[9] D::cd = ";
	cout << (char)*((int*)(&dd) + 9) << endl;//D::cd
	cout << "[10]  = 0x";
	cout << (int*)*((int*)(&dd) + 10) << endl; // 为0, vtordisp字段一直存储为0

	cout << "[11] D::B::_vptr->" << endl;

    /* 解决方案:只要保证取得地址之后立刻调用pFun()就没问题,即:

	pFun = (Fun)pVtab[11][0]; pFun(); */
	pFun = (Fun)pVtab[11][0]; 
	cout << "     [0] ";  // 此行会改变ecx值,而ecx就是this指针,所以下面一行调用会报错。  
    pFun(); //D::f();  // vtordisp应该也有关系。
	pFun = (Fun)pVtab[11][1]; 
	cout << "     [1] ";    pFun(); //B::Bf();
	pFun = (Fun)pVtab[11][2];
	cout << "     [2] ";
	cout << pFun << endl;
	cout << "[12] B::ib = ";
	cout << *((int*)(&dd) + 12) << endl; //B::ib
	cout << "[13] B::cb = ";
	cout << (char)*((int*)(&dd) + 13) << endl;//B::cb

	return 0;
}

类D内存布局如下:

 

 #pragma vtordisp(off)   //可关闭vtordisp

修改后代码:

#include <iostream>
using namespace std; 

#pragma vtordisp(off)   //关闭vtordisp

class B
{
public:
	int ib;
	char cb;
public:
	B() :ib(0), cb('B') {}
	virtual void f() { cout << "B::f()" << endl; }
	virtual void Bf() { cout << "B::Bf()" << endl; }
};

class B1 : virtual public B
{
public:
	int ib1;
	char cb1;
public:
	B1() :ib1(11), cb1('1') {}
	virtual void f() { cout << "B1::f()" << endl; }
	virtual void f1() { cout << "B1::f1()" << endl; }
	virtual void Bf1() { cout << "B1::Bf1()" << endl; }
};

class B2 : virtual public B
{
public:
	int ib2;
	char cb2;
public:
	B2() :ib2(12), cb2('2') {}
	virtual void f() { cout << "B2::f()" << endl; }
	virtual void f2() { cout << "B2::f2()" << endl; }
	virtual void Bf2() { cout << "B2::Bf2()" << endl; }
};

class D : public B1, public B2
{
public:
	int id;
	char cd;
public:
	D() :id(100), cd('D') {}
	virtual void f() { cout << "D::f()" << endl; }
	virtual void f1() { cout << "D::f1()" << endl; }
	virtual void f2() { cout << "D::f2()" << endl; }
	virtual void Df() { cout << "D::Df()" << endl; }
};


int main()
{
	typedef void(*Fun)(void);
	int** pVtab = NULL;
	Fun pFun = NULL;
	D dd;
	
	pVtab = (int**)&dd;

	cout << "[0] D::B1::_vptr->" << endl;
	pFun = (Fun)pVtab[0][0];
	cout << "     [0] ";    pFun(); //D::f1();
	pFun = (Fun)pVtab[0][1];
	cout << "     [1] ";    pFun(); //B1::Bf1();
	pFun = (Fun)pVtab[0][2];
	cout << "     [2] ";    pFun(); //D::Df();
	pFun = (Fun)pVtab[0][3];
	cout << "     [3] ";
	cout << pFun << endl;

	cout << "[1] = 0x";
	cout << (int*)*((int*)(&dd) + 1) << endl;  // 偏移指针vbptr的值
	cout << *(int*)*((int*)(&dd) + 1) << endl; // 偏移指针vbptr指向的值,为-4

	cout << "[2] B1::ib1 = ";
	cout << *((int*)(&dd) + 2) << endl; //B1::ib1
	cout << "[3] B1::cb1 = ";
	cout << (char)*((int*)(&dd) + 3) << endl; //B1::cb1	
											 
	cout << "[4] D::B2::_vptr->" << endl;
	pFun = (Fun)pVtab[4][0];
	cout << "     [0] ";    pFun(); //D::f2();
	pFun = (Fun)pVtab[4][1];
	cout << "     [1] ";    pFun(); //B2::Bf2();
	pFun = (Fun)pVtab[4][2];
	cout << "     [2] ";
	cout << pFun << endl;

	cout << "[5] = 0x";
	cout << (int*)*((int*)(&dd) + 5) << endl;  // 偏移指针vbptr的值
	cout << *(int*)*((int*)(&dd) + 5) << endl; // 偏移指针vbptr指向的值,为-4

	cout << "[6] B2::ib2 = ";
	cout << (int)*((int*)(&dd) + 6) << endl; //B2::ib2
	cout << "[7] B2::cb2 = ";
	cout << (char)*((int*)(&dd) + 7) << endl; //B2::cb2
	cout << "[8] D::id = ";
	cout << *((int*)(&dd) + 8) << endl; //D::id
	cout << "[9] D::cd = ";
	cout << (char)*((int*)(&dd) + 9) << endl;//D::cd


	cout << "[10] D::B::_vptr->" << endl;
	pFun = (Fun)pVtab[10][0]; 
	cout << "     [0] ";  pFun(); //D::f();
	pFun = (Fun)pVtab[10][1]; 
	cout << "     [1] ";    pFun(); //B::Bf();
	pFun = (Fun)pVtab[10][2];
	cout << "     [2] ";
	cout << pFun << endl;

	cout << "[11] B::ib = ";
	cout << *((int*)(&dd) + 11) << endl; //B::ib
	cout << "[12] B::cb = ";
	cout << (char)*((int*)(&dd) + 12) << endl;//B::cb

	return 0;
}

输出:

类D内存布局为:

GCC 3.4.4

 

VC++ 2003

 

[0] B1::_vptr ->

 

    [0] : D::f()

 

    [1] : D::f1()

 

    [2] : B1::Bf1()

 

    [3] : D::f2()

 

    [4] : D::Df()

 

    [5] : 1

 

[1] B1::ib1 : 11

 

[2] B1::cb1 : 1

 

[3] B2::_vptr ->

 

    [0] : D::f()

 

    [1] : D::f2()

 

    [2] : B2::Bf2()

 

    [3] : 0

 

[4] B2::ib2 : 12

 

[5] B2::cb2 : 2

 

[6] D::id : 100

 

[7] D::cd : D

 

[8] B::_vptr ->

 

    [0] : D::f()

 

    [1] : B::Bf()

 

    [2] : 0

 

[9] B::ib : 0

 

[10] B::cb : B

 

[11] NULL : 0

 

[0] D::B1::_vptr->

 

     [0] D::f1()

 

     [1] B1::Bf1()

 

     [2] D::Df()

 

     [3] 00000000

 

[1] = 0x0013FDC4  ç 该地址取值后是-4

 

[2] B1::ib1 = 11

 

[3] B1::cb1 = 1

 

[4] D::B2::_vptr->

 

     [0] D::f2()

 

     [1] B2::Bf2()

 

     [2] 00000000

 

[5] = 0x4539260   ç 该地址取值后是-4

 

[6] B2::ib2 = 12

 

[7] B2::cb2 = 2

 

[8] D::id = 100

 

[9] D::cd = D

 

[10]  = 0x00000000

 

[11] D::B::_vptr->

 

     [0] D::f()

 

     [1] B::Bf()

 

     [2] 00000000

 

[12] B::ib = 0

 

[13] B::cb = B

 

 关于虚拟继承的运行结果我就不画图了(前面的作图已经让我产生了很严重的厌倦感,所以就偷个懒了,大家见谅了)

在上面的输出结果中,我用不同的颜色做了一些标明。我们可以看到如下的几点:

1)无论是GCC还是VC++,除了一些细节上的不同,其大体上的对象布局是一样的。也就是说,先是B1(黄色),然后是B2(绿色),接着是D(灰色),而B这个超类(青蓝色)的实例都放在最后的位置。


2)关于虚函数表,尤其是第一个虚表,GCC和VC++有很重大的不一样。但仔细看下来,还是VC++的虚表比较清晰和有逻辑性。
 

3)VC++和GCC都把B这个超类放到了最后,而VC++有一个NULL分隔符(即vtordisp),GCC则没有。

 

结束语

C++这门语言是一门比较复杂的语言,对于程序员来说,我们似乎永远摸不清楚这门语言背着我们在干了什么。需要熟悉这门语言,我们就必需要了解C++里面的那些东西,需要我们去了解他后面的内存对象。这样我们才能真正的了解C++,从而能够更好的使用C++这门最难的编程语言。

在文章束之前还是介绍一下自己吧。我从事软件研发有十个年头了,目前是软件开发技术主管,技术方面,主攻Unix/C/C++,比较喜欢网络上的技术,比如分布式计算,网格计算,P2P,Ajax等一切和互联网相关的东西。管理方面比较擅长于团队建设,技术趋势分析,项目管理。欢迎大家和我交流,我的MSN和Email是:haoel@hotmail.com 

续接 :C++ 对象的内存布局(上)---陈皓改进版

原文链接:https://blog.csdn.net/haoel/article/details/3081385

原文地址:https://www.cnblogs.com/a3192048/p/12241303.html