DPDK flow_classify 源码阅读

代码部分

/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017 Intel Corporation
 */

#include <stdint.h>
#include <inttypes.h>
#include <getopt.h>

#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_cycles.h>
#include <rte_lcore.h>
#include <rte_mbuf.h>
#include <rte_flow.h>
#include <rte_flow_classify.h>
#include <rte_table_acl.h>

#define RX_RING_SIZE 1024
#define TX_RING_SIZE 1024

#define NUM_MBUFS 8191
#define MBUF_CACHE_SIZE 250
#define BURST_SIZE 32

#define MAX_NUM_CLASSIFY 30
#define FLOW_CLASSIFY_MAX_RULE_NUM 91
#define FLOW_CLASSIFY_MAX_PRIORITY 8
#define FLOW_CLASSIFIER_NAME_SIZE 64

#define COMMENT_LEAD_CHAR	('#')
#define OPTION_RULE_IPV4	"rule_ipv4"
#define RTE_LOGTYPE_FLOW_CLASSIFY	RTE_LOGTYPE_USER3
#define flow_classify_log(format, ...) 
		RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)

#define uint32_t_to_char(ip, a, b, c, d) do {
		*a = (unsigned char)(ip >> 24 & 0xff);
		*b = (unsigned char)(ip >> 16 & 0xff);
		*c = (unsigned char)(ip >> 8 & 0xff);
		*d = (unsigned char)(ip & 0xff);
	} while (0)

enum {
	CB_FLD_SRC_ADDR,     // 0
	CB_FLD_DST_ADDR,     // 1
	CB_FLD_SRC_PORT,	 // 2
	CB_FLD_SRC_PORT_DLM, // 3 
	CB_FLD_SRC_PORT_MASK,// 4 
	CB_FLD_DST_PORT,	 // 5 
	CB_FLD_DST_PORT_DLM, // 6
	CB_FLD_DST_PORT_MASK,// 7 
	CB_FLD_PROTO,		 // 8
	CB_FLD_PRIORITY,	 // 9 
	CB_FLD_NUM,			 // 10 
};

static struct{
	const char *rule_ipv4_name;
} parm_config; // 用于文件访问的。

const char cb_port_delim[] = ":";

static const struct rte_eth_conf port_conf_default = {
	.rxmode = {
		.max_rx_pkt_len = ETHER_MAX_LEN,
		.ignore_offload_bitfield = 1,
	},
};

struct flow_classifier { 
	struct rte_flow_classifier *cls;
};
// flow_classifer 的结构要看 sample guide

/*
struct rte_flow_classifier {

    // classifier的参数,要 create() 时传入结构体。
    char name[RTE_FLOW_CLASSIFIER_MAX_NAME_SZ];
    int socket_id;

    // 其余的内部字段
    // n tuple 过滤器,也就是流规则的匹配项目了。
    struct rte_eth_ntuple_filter ntuple_filter;

    // tables
    struct rte_cls_table tables[RTE_FLOW_CLASSIFY_TABLE_MAX];
    uint32_t table_mask;
    uint32_t num_tables;

    uint16_t nb_pkts;
    struct rte_flow_classify_table_entry
        *entries[RTE_PORT_IN_BURST_SIZE_MAX];
} __rte_cache_aligned;
*/

struct flow_classifier_acl {
	struct flow_classifier cls;
} __rte_cache_aligned;

/* ACL field definitions for IPv4 5 tuple rule */

enum {
	PROTO_FIELD_IPV4, // 0
	SRC_FIELD_IPV4,   // 1
	DST_FIELD_IPV4,   // 2
	SRCP_FIELD_IPV4,  // 3
	DSTP_FIELD_IPV4,  // 4 
	NUM_FIELDS_IPV4   // 5
};

enum {
	PROTO_INPUT_IPV4,
	SRC_INPUT_IPV4,
	DST_INPUT_IPV4,
	SRCP_DESTP_INPUT_IPV4
};


/* 数据结构 rte_acl_field_def:ACL 访问控制表的字段的定义
ACL规则中的每个字段都有一个关联定义。有五个,分别是:
字段的类型 type,
字段的字节数大小 size,
字段的索引(指示哪一个字段)field_index 一个0开始的值,用来指定字段在规则内部的位置,0~n-1表示n个字段。
输入索引 input_index(0-N)  所有输入字段,除了第一个,其他必须以4个连续字节分组,这个input_index就是来指定字段在那个组
偏移量offset 定义了字段的偏移量,为查找指定从缓冲区的起始位置的偏移。
*/

/* 
rule “规则” 有一些独有规则:
	1. 规则定义的第一个字段必须是一个字节的长度
	2. 之后的字段必须以4个连续的字节分组
	这主要是为性能考虑,查找函数处理第一个输入字节做为这个流的设置的一部分,然后这查找函数的内部循环被展开来同时处理4字节的输入。
*/

static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { // 共 5 个字段,每个字段都要有一个关联的五个定义
	/* first input field - always one byte long. */ // 第一个字段 1个字节
	{
		.type = RTE_ACL_FIELD_TYPE_BITMASK, // type 字段的类型,有3种选项,见https://www.cnblogs.com/danxi/p/6650757.html
		.size = sizeof(uint8_t), // 1个字节
		.field_index = PROTO_FIELD_IPV4, // 两个 index 都是 enum
		.input_index = PROTO_INPUT_IPV4,
		.offset = sizeof(struct ether_hdr) + // todo :数据结构
			offsetof(struct ipv4_hdr, next_proto_id),
	},
	/* next input field (IPv4 source address) - 4 consecutive bytes. */
	{   // 第二个字段 源IP地址
		/* rte_flow uses a bit mask for IPv4 addresses */
		.type = RTE_ACL_FIELD_TYPE_BITMASK, 
		.size = sizeof(uint32_t),
		.field_index = SRC_FIELD_IPV4,
		.input_index = SRC_INPUT_IPV4,
		.offset = sizeof(struct ether_hdr) +
			offsetof(struct ipv4_hdr, src_addr),
	},
	/* next input field (IPv4 destination address) - 4 consecutive bytes. */
	{   // 第三个字段 目的IP地址
		/* rte_flow uses a bit mask for IPv4 addresses */
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint32_t),
		.field_index = DST_FIELD_IPV4,
		.input_index = DST_INPUT_IPV4,
		.offset = sizeof(struct ether_hdr) +
			offsetof(struct ipv4_hdr, dst_addr),
	},
	/*
	 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
	 * They share the same input index.
	 */
	// 接下来的 两个端口号 才组成一个 4 字节,所以共享同样的一个 input index
	{
		/* rte_flow uses a bit mask for protocol ports */
		.type = RTE_ACL_FIELD_TYPE_BITMASK, 
		.size = sizeof(uint16_t),
		.field_index = SRCP_FIELD_IPV4,
		.input_index = SRCP_DESTP_INPUT_IPV4,
		.offset = sizeof(struct ether_hdr) + // (todo)
			sizeof(struct ipv4_hdr) +
			offsetof(struct tcp_hdr, src_port),
	},
	{
		/* rte_flow uses a bit mask for protocol ports */
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint16_t),
		.field_index = DSTP_FIELD_IPV4,
		.input_index = SRCP_DESTP_INPUT_IPV4,
		.offset = sizeof(struct ether_hdr) +
			sizeof(struct ipv4_hdr) +
			offsetof(struct tcp_hdr, dst_port),
	},
};

/* flow classify data */
static int num_classify_rules; // rules数组的下标
static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY]; // rules 数组
static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;  // stats 结构体 (todo)
static struct rte_flow_classify_stats classify_stats = { // 有计数功能
		.stats = (void **)&ntuple_stats
};

/* parameters for rte_flow_classify_validate and
 * rte_flow_classify_table_entry_add functions
 */

/* rte_flow_item 四个字段:
1. type,是 enum 定义。见 rte_flow.h:http://doc.dpdk.org/api/rte__flow_8h_source.html
2. spec,指向相关项类型结构的有效指针,在许多情况下,可以设置成 NULL以请求广泛(非特定)匹配。在此情况下,last 和 mask 也要设置成 NULL
3. last,可以指向相同类型的结构,以定义包含范围。
4. Mask,是在解释spec和last的内容之前应用的简单位掩码
*/
static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
	0, 0, 0 };
static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
	0, 0, 0 };

/* sample actions:
 * "actions count / end"
 */
struct rte_flow_query_count count = { // 计数器查询的结构体
	.reset = 1, // Reset counters after query
	.hits_set = 1, // 启用 hits 字段
	.bytes_set = 1, // 启用 bytes 字段
	.hits = 0, // Number of hits for this rule
	.bytes = 0, // Number of bytes through this rule
};
static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, &count};
static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; // 本程序就用到了计数和end 两种 action

static struct rte_flow_action actions[2]; 
// rte_flow_action 见 programmers’ guides 的第九章 :http://doc.dpdk.org/guides/prog_guide/rte_flow.html
// actions 数组代表当 pkt 被 pattern 匹配时要执行的一系列操作。
// 在这个例子里,数组长度为二,actions[0] 就是计数,actions[1] 就是用来提示结尾。

// rte_flow_action的具体定义不清楚
// 估计第一个字段是 enum rte_flow_action_type ,具体的 enum 定义见:http://doc.dpdk.org/api/rte__flow_8h.html#a78f0386e683cfc491462a771df8b971a
// 第二个字段计数器查询的结构体


/* sample attributes */
static struct rte_flow_attr attr;
/* rte_flow_attr 代表一条流规则的属性,文档:http://doc.dpdk.org/api/structrte__flow__attr.html
字段:
uint32_t 	group       组号
uint32_t 	priority	同组内的优先级
uint32_t 	ingress:1	规则适用于入口流量
uint32_t 	egress:1	规则适用于出口流量
uint32_t 	transfer:1	todo
uint32_t 	reserved:29 保留,必须为零。
*/

/* flow_classify.c: * Based on DPDK skeleton forwarding example. */

/*
 * Initializes a given port using global settings and with the RX buffers
 * coming from the mbuf_pool passed as a parameter.
 */
// 端口初始化的代码与 basicfw 一模一样
static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{
	struct rte_eth_conf port_conf = port_conf_default;
	struct ether_addr addr;
	const uint16_t rx_rings = 1, tx_rings = 1;
	int retval;
	uint16_t q;
	struct rte_eth_dev_info dev_info;
	struct rte_eth_txconf txconf;

	if (!rte_eth_dev_is_valid_port(port))
		return -1;

	rte_eth_dev_info_get(port, &dev_info);
	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
		port_conf.txmode.offloads |=
			DEV_TX_OFFLOAD_MBUF_FAST_FREE;

	/* Configure the Ethernet device. */
	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
	if (retval != 0)
		return retval;

	/* Allocate and set up 1 RX queue per Ethernet port. */
	for (q = 0; q < rx_rings; q++) {
		retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
				rte_eth_dev_socket_id(port), NULL, mbuf_pool);
		if (retval < 0)
			return retval;
	}

	txconf = dev_info.default_txconf;
	txconf.txq_flags = ETH_TXQ_FLAGS_IGNORE;
	txconf.offloads = port_conf.txmode.offloads;
	/* Allocate and set up 1 TX queue per Ethernet port. */
	for (q = 0; q < tx_rings; q++) {
		retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
				rte_eth_dev_socket_id(port), &txconf);
		if (retval < 0)
			return retval;
	}

	/* Start the Ethernet port. */
	retval = rte_eth_dev_start(port);
	if (retval < 0)
		return retval;

	/* Display the port MAC address. */
	rte_eth_macaddr_get(port, &addr);
	printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
			   " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "
",
			port,
			addr.addr_bytes[0], addr.addr_bytes[1],
			addr.addr_bytes[2], addr.addr_bytes[3],
			addr.addr_bytes[4], addr.addr_bytes[5]);

	/* Enable RX in promiscuous mode for the Ethernet device. */
	rte_eth_promiscuous_enable(port);

	return 0;
}

/*
 * The lcore main. This is the main thread that does the work, reading from
 * an input port classifying the packets and writing to an output port.
 */
static __attribute__((noreturn)) void
lcore_main(struct flow_classifier *cls_app)
{
	uint16_t port;
	int ret;
	int i = 0;

	// 测试:删除一条规则
	ret = rte_flow_classify_table_entry_delete(cls_app->cls,
			rules[7]);
	if (ret)
		printf("table_entry_delete failed [7] %d

", ret);
	else
		printf("table_entry_delete succeeded [7]

");

	/*
	 * Check that the port is on the same NUMA node as the polling thread
	 * for best performance.
	 */
	RTE_ETH_FOREACH_DEV(port)
		if (rte_eth_dev_socket_id(port) > 0 &&
			rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
			printf("

");
			printf("WARNING: port %u is on remote NUMA node
",
			       port);
			printf("to polling thread.
");
			printf("Performance will not be optimal.
");
		}
	printf("
Core %u forwarding packets. ", rte_lcore_id());
	printf("[Ctrl+C to quit]
");

	/* Run until the application is quit or killed. */
	for (;;) {
		/*
		 * Receive packets on a port, **classify them** and forward them
		 * on the paired port.
		 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
		 */
		RTE_ETH_FOREACH_DEV(port) {
			/* Get burst of RX packets, from first port of pair. */
			struct rte_mbuf *bufs[BURST_SIZE];
			const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
					bufs, BURST_SIZE); // 收包

			if (unlikely(nb_rx == 0))
				continue;

			for (i = 0; i < MAX_NUM_CLASSIFY; i++) { 
				if (rules[i]) {  // 对classifier里的每条规则(用一个数组来保存插入成功时返回的rule指针)

				/* rte_flow_classifier_query(),查看burst中是否有任何数据包与表中的一条流规则匹配。
				参数:流分类器句柄、要处理的数据包的mbuf
						一个burst的数据包数量、要查询的规则、查询的stat */
					ret = rte_flow_classifier_query(
						cls_app->cls, 
						bufs, nb_rx, rules[i], 
						&classify_stats);
					if (ret) 
						printf(
							"rule [%d] query failed ret [%d]

",
							i, ret);

					else { // 返回 0 代表有match
						printf(
						"rule[%d] count=%"PRIu64"
",
						i, ntuple_stats.counter1);

						printf("proto = %d
",
						ntuple_stats.ipv4_5tuple.proto);
					}
				}
			}

			/* Send burst of TX packets, to second port of pair. */
			const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
					bufs, nb_rx);

			/* Free any unsent packets. */
			if (unlikely(nb_tx < nb_rx)) {
				uint16_t buf;

				for (buf = nb_tx; buf < nb_rx; buf++)
					rte_pktmbuf_free(bufs[buf]);
			}
		}
	}
}

/*
 * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
 * Expected format:
 * <src_ipv4_addr>'/'<masklen> <space> 
 * <dst_ipv4_addr>'/'<masklen> <space> 
 * <src_port> <space> ":" <src_port_mask> <space> 
 * <dst_port> <space> ":" <dst_port_mask> <space> 
 * <proto>'/'<proto_mask> <space> 
 * <priority>
 */

static int
get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
		char dlm)
{
	unsigned long val;
	char *end;

	errno = 0;
	val = strtoul(*in, &end, base);

	/*  unsigned long int strtoul(const char *str, char **endptr, int base) 

	把参数 str 所指向的字符串根据给定的 base 转换为一个无符号长整数(unsigned long int 型)。

	str -- 要转换为无符号长整数的字符串。

	endptr -- 对类型为 char* 的对象的引用,其值会由函数设置为 str 中数值后的下一个字符。
	(end 会指向点分十进制中的下一个点)

	base -- 基数,必须介于 2 和 36(包含)之间,或者是特殊值 0。
	当base = 0,自动判断字符串的类型,并按10进制输出,例如"0xa", 就会把字符串当做16进制处理,输出为 10。
	参考:http://www.runoob.com/cprogramming/c-function-strtoul.html
		  https://blog.csdn.net/chuhongcai/article/details/52032926
	*/

	if (errno != 0 || end[0] != dlm || val > lim) 
		return -EINVAL;
	*fd = (uint32_t)val;
	*in = end + 1; // 例如 2.2.2.3 会依次转换 2 2 2 3
	return 0;
}

static int
parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
{
	// in: 2.2.2.3/24

	uint32_t a, b, c, d, m;

	// 这四个if是判断IP地址的每个点分十进制是否小于255(UINT8_MAX)
	if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
		return -EINVAL;
	if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
		return -EINVAL;
	if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
		return -EINVAL;
	if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
		return -EINVAL;

	// 后缀要小于32
	if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
		return -EINVAL;

	addr[0] = IPv4(a, b, c, d);
	mask_len[0] = m;
	return 0;
}

static int
parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
// 将 txt 中一行输入,转换成一个 rte_eth_ntuple_filter 结构体。
{
	int i, ret;
	char *s, *sp, *in[CB_FLD_NUM];
	static const char *dlm = " 	
";
	int dim = CB_FLD_NUM; // 10
	uint32_t temp;

	s = str;
	for (i = 0; i != dim; i++, s = NULL) {
		in[i] = strtok_r(s, dlm, &sp); 
		// linux下的字符串切割函数:strtok_r
		/* char *strtok_r(char *str, const char *delim, char **saveptr);
		在str中,返回由delim指定的分界符分开str的单词。
		参考链接:https://blog.csdn.net/hustfoxy/article/details/23473805
		*/
		if (in[i] == NULL)
			return -EINVAL;
	}
	/* 一条 rule 占一行,格式,以及分词后的在in数组内的下标如下:
	#源IP/前缀  目的IP/前缀 源端口号 : 掩码 目的端口号 : 掩码 协议/掩码 优先级
	2.2.2.3/24  2.2.2.7/24 32 : 0xffff    33 : 0xffff      17/0xff  0
	0           1          2  3 4         5  6 7           8        9  ← in数组下标	
	*/

	/* rte_eth_ntuple_filter  的字段:
	uint16_t 	flags
	uint32_t 	dst_ip			Destination IP address in big endian.
	uint32_t 	dst_ip_mask
	uint32_t 	src_ip			in big endian.
	uint32_t 	src_ip_mask
	uint16_t 	dst_port		Destination port in big endian.
	uint16_t 	dst_port_mask
	uint16_t 	src_port		in big endian.
	uint16_t 	src_port_mask
	uint8_t 	proto			L4 protocol.
	uint8_t 	proto_mask
	uint8_t 	tcp_flags		only meaningful when the proto is TCP.
	uint16_t 	priority 		seven levels (001b-111b), 111b is highest, used when more than one filter matches.
	uint16_t 	queue			Queue assigned to when match
	 */

	ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
			&ntuple_filter->src_ip,
			&ntuple_filter->src_ip_mask);  // 解析 src_ip 得到IP地址和掩码,放到 ntuple_filter的对应字段里
	if (ret != 0) {
		flow_classify_log("failed to read source address/mask: %s
",
			in[CB_FLD_SRC_ADDR]);
		return ret;
	}

	ret = parse_ipv4_net(in[CB_FLD_DST_ADDR], // 解析 dst_ip
			&ntuple_filter->dst_ip,
			&ntuple_filter->dst_ip_mask);
	if (ret != 0) {
		flow_classify_log("failed to read source address/mask: %s
",
			in[CB_FLD_DST_ADDR]);
		return ret;
	}

	if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
		return -EINVAL; // 源端口号字符串转 unsigned long ,验证不能大于16位无符号数的最大值。
	ntuple_filter->src_port = (uint16_t)temp;

	if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
			sizeof(cb_port_delim)) != 0)  // 检查分隔符是否为: 不然是格式错误。
		return -EINVAL;

	if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
		return -EINVAL; // 源端口号掩码
	ntuple_filter->src_port_mask = (uint16_t)temp;

	if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
		return -EINVAL; // 目的端口号
	ntuple_filter->dst_port = (uint16_t)temp;

	if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
			sizeof(cb_port_delim)) != 0)
		return -EINVAL;

	if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
		return -EINVAL; // 目的端口号掩码
	ntuple_filter->dst_port_mask = (uint16_t)temp;

	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
		return -EINVAL; // 协议号
	ntuple_filter->proto = (uint8_t)temp;

	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
		return -EINVAL; // 协议号掩码
	ntuple_filter->proto_mask = (uint8_t)temp;

	if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
		return -EINVAL; // 优先级
	ntuple_filter->priority = (uint16_t)temp;
	if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
		ret = -EINVAL;

	return ret;
}

/* Bypass comment and empty lines */
static inline int
is_bypass_line(char *buff)
{
	int i = 0;

	/* comment line */
	if (buff[0] == COMMENT_LEAD_CHAR)
		return 1;
	/* empty line */
	while (buff[i] != '') {
		if (!isspace(buff[i]))
			return 0;
		i++;
	}
	return 1;
}

static uint32_t
convert_depth_to_bitmask(uint32_t depth_val)
{
	uint32_t bitmask = 0;
	int i, j;

	for (i = depth_val, j = 0; i > 0; i--, j++)
		bitmask |= (1 << (31 - j));
	return bitmask;
}

static int
add_classify_rule(struct rte_eth_ntuple_filter *pattern_ipv4_5tuple,
		struct flow_classifier *cls_app) 
		// 对 rte_flow_classify_table_entry_add() 的一层封装,主要是设定好参数,从rte_eth_ntuple_filter 转换成 flow_item
{
	int ret = -1;
	int key_found;
	struct rte_flow_error error;
	/* rte_flow_item: ACL 规则的详细内容。
	会从最低协议层开始堆叠flow_item来形成一个匹配模式。必须由 end_item 结尾。
	*/
	struct rte_flow_item_ipv4 ipv4_spec; // (todo) rte_flow_item . Matches an IPv4 header.
	struct rte_flow_item_ipv4 ipv4_mask;

	struct rte_flow_item ipv4_udp_item;
	struct rte_flow_item ipv4_tcp_item;
	struct rte_flow_item ipv4_sctp_item;

	struct rte_flow_item_udp udp_spec;
	struct rte_flow_item_udp udp_mask;
	struct rte_flow_item udp_item;

	struct rte_flow_item_tcp tcp_spec;
	struct rte_flow_item_tcp tcp_mask;
	struct rte_flow_item tcp_item;

	struct rte_flow_item_sctp sctp_spec;
	struct rte_flow_item_sctp sctp_mask;
	struct rte_flow_item sctp_item;

	struct rte_flow_item pattern_ipv4_5tuple[4]; // ntuple_filter 结构体 --> rte_flow_item 结构体数组
	struct rte_flow_classify_rule *rule;

	uint8_t ipv4_proto;

	if (num_classify_rules >= MAX_NUM_CLASSIFY) {
		printf(
			"
INFO:  classify rule capacity %d reached
",
			num_classify_rules);
		return ret;
	}

	/* set up parameters for validate and add */
	memset(&ipv4_spec, 0, sizeof(ipv4_spec));
	ipv4_spec.hdr.next_proto_id = ntuple_filter->proto; // 协议号
	ipv4_spec.hdr.src_addr = ntuple_filter->src_ip; // 源IP
	ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip; // 目的IP
	ipv4_proto = ipv4_spec.hdr.next_proto_id; 
	// 把这三个参数从ntuple_filter结构体提取到 rte_flow_item_ipv4 的一个专门的结构体:ipv4_spec 

	memset(&ipv4_mask, 0, sizeof(ipv4_mask));
	ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask; // 协议掩码
	ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
	ipv4_mask.hdr.src_addr =
		convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
	ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask; // 源IP地址的掩码
	ipv4_mask.hdr.dst_addr =
		convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr); // 目的IP地址的掩码
	// 把这三个参数从ntuple_filter结构体提取到 rte_flow_item_ipv4 的一个专门的结构体 :ipv4_mask

	switch (ipv4_proto) { // 根据协议设置L3、L4的item
	case IPPROTO_UDP: // UDP
		ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
		ipv4_udp_item.spec = &ipv4_spec;
		ipv4_udp_item.mask = &ipv4_mask;
		ipv4_udp_item.last = NULL;

		udp_spec.hdr.src_port = ntuple_filter->src_port;
		udp_spec.hdr.dst_port = ntuple_filter->dst_port;
		udp_spec.hdr.dgram_len = 0;
		udp_spec.hdr.dgram_cksum = 0;

		udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
		udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
		udp_mask.hdr.dgram_len = 0;
		udp_mask.hdr.dgram_cksum = 0;

		udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
		udp_item.spec = &udp_spec;
		udp_item.mask = &udp_mask;
		udp_item.last = NULL;

		attr.priority = ntuple_filter->priority;
		pattern_ipv4_5tuple[1] = ipv4_udp_item; // L3 item 是 ipv4_upd
		pattern_ipv4_5tuple[2] = udp_item; // L4 item 是 udp_item
		break;
	case IPPROTO_TCP: // TCP
		ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
		ipv4_tcp_item.spec = &ipv4_spec;
		ipv4_tcp_item.mask = &ipv4_mask;
		ipv4_tcp_item.last = NULL;

		memset(&tcp_spec, 0, sizeof(tcp_spec));
		tcp_spec.hdr.src_port = ntuple_filter->src_port;
		tcp_spec.hdr.dst_port = ntuple_filter->dst_port;

		memset(&tcp_mask, 0, sizeof(tcp_mask));
		tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
		tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;

		tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
		tcp_item.spec = &tcp_spec;
		tcp_item.mask = &tcp_mask;
		tcp_item.last = NULL;

		attr.priority = ntuple_filter->priority;
		pattern_ipv4_5tuple[1] = ipv4_tcp_item; // L3 item 是 ipv4_tcp
		pattern_ipv4_5tuple[2] = tcp_item; // L4 item 是 tcp_item
		break;
	case IPPROTO_SCTP:
		ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
		ipv4_sctp_item.spec = &ipv4_spec;
		ipv4_sctp_item.mask = &ipv4_mask;
		ipv4_sctp_item.last = NULL;

		sctp_spec.hdr.src_port = ntuple_filter->src_port;
		sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
		sctp_spec.hdr.cksum = 0;
		sctp_spec.hdr.tag = 0;

		sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
		sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
		sctp_mask.hdr.cksum = 0;
		sctp_mask.hdr.tag = 0;

		sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
		sctp_item.spec = &sctp_spec;
		sctp_item.mask = &sctp_mask;
		sctp_item.last = NULL;

		attr.priority = ntuple_filter->priority;
		pattern_ipv4_5tuple[1] = ipv4_sctp_item;
		pattern_ipv4_5tuple[2] = sctp_item;
		break;
	default:
		return ret;
	}

	attr.ingress = 1; // rules 适用于入口流量
	
	pattern_ipv4_5tuple[0] = eth_item;// L2 item,放在pattern_ipv4_5tuple[0],一定是eth_item
	// L3 item 放在数组下标1,L4 item放在数组下标2
	pattern_ipv4_5tuple[3] = end_item; // 最后一个 item 一定要用 end_item 结尾。

	actions[0] = count_action; // 流匹配的动作是 计数
	actions[1] = end_action; // (terminated by the END pattern item)

	/* Validate and add rule */
	/* 验证这条规则的有效性
	参数:
	1. classifer 指针
	2. attr 指针,流规则的属性,详细内容见上。
	3. rte_flow_item 结构体数组(terminated by the END pattern item),也就是 ACL 规则的详细内容
	4. rte_flow_action 结构体数组(terminated by the END pattern item),表示流规则的动作,比如QUEUE, DROP, END等等,
	5. struct rte_flow_error,出错时存放信息。
	*/
	ret = rte_flow_classify_validate(cls_app->cls, &attr,
			pattern_ipv4_5tuple, actions, &error);
	if (ret) { // 成功时返回 0 
		printf("table entry validate failed ipv4_proto = %u
",
			ipv4_proto);
		return ret;
	}

	// 调用 rte_flow_classify_table_entry_add() 将规则添加到 rte_flow_classifier 对象中的 table。
	/* 五个参数
		1. classifier 的指针。
		2. attr 指针。
		3. rte_flow_item 结构体数组,也就是 ACL 规则的详细内容。
		4. rte_flow_action 结构体数组,表示流规则的动作。
		5. 一个int指针,如果规则已经存在则返回1,否则返回0。
		6. 仅出错时存放信息。
	*/
	rule = rte_flow_classify_table_entry_add(
			cls_app->cls, &attr, pattern_ipv4_5tuple,
			actions, &key_found, &error);
	if (rule == NULL) { // 添加成功时返回的是rule的有效句柄,否则为NULL
		printf("table entry add failed ipv4_proto = %u
",
			ipv4_proto);
		ret = -1;
		return ret;
	}

	rules[num_classify_rules] = rule; // 将rule存放在一个数组里,方便删除等操作
	num_classify_rules++;
	return 0;
}

static int
add_rules(const char *rule_path, struct flow_classifier *cls_app) 
// 封装一层,主要是文件操作,把txt中的一行解析成 rte_eth_ntuple_filter 结构体
{
	FILE *fh;
	char buff[LINE_MAX];
	unsigned int i = 0;
	unsigned int total_num = 0;
	struct rte_eth_ntuple_filter ntuple_filter; // 用于定义n-tuple过滤器条目的结构体
	int ret;

	fh = fopen(rule_path, "rb"); // 打开 ipv4_rules_file.txt
	if (fh == NULL)
		rte_exit(EXIT_FAILURE, "%s: fopen %s failed
", __func__,
			rule_path);

	ret = fseek(fh, 0, SEEK_SET); // 设置文件指针fh的位置指向文件开头
	if (ret) // 成功,返回0
		rte_exit(EXIT_FAILURE, "%s: fseek %d failed
", __func__,
			ret);

	i = 0;
	while (fgets(buff, LINE_MAX, fh) != NULL) { // 读取一行内容
		i++;

		if (is_bypass_line(buff)) // 跳过空行 or 以井号开头的注释
			continue;

		if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) { // 有最大规则数量(行数)限制
			printf("
INFO: classify rule capacity %d reached
",
				total_num);
			break;
		}

		if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0) // 规则的 parser 解析txt的一行输入,存放到ntuple_filter结构体里
			rte_exit(EXIT_FAILURE,
				"%s Line %u: parse rules error
",
				rule_path, i);

		if (add_classify_rule(&ntuple_filter, cls_app) != 0) // 添加这条五元组规则到 ACL 中
			rte_exit(EXIT_FAILURE, "add rule error
");

		total_num++;
	}

	fclose(fh);
	return 0;
}

/* display usage */
static void
print_usage(const char *prgname)
{
	printf("%s usage:
", prgname);
	printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
	printf("specify the ipv4 rules file.
");
	printf("Each rule occupies one line in the file.
");
}

/* Parse the argument given in the command line of the application */
// 解析执行 flow_classify 的命令行参数
static int
parse_args(int argc, char **argv)
{
	int opt, ret;
	char **argvopt;
	int option_index;
	char *prgname = argv[0];
	static struct option lgopts[] = {
		{OPTION_RULE_IPV4, 1, 0, 0},
		{NULL, 0, 0, 0}
	};

	argvopt = argv;

	while ((opt = getopt_long(argc, argvopt, "",
				lgopts, &option_index)) != EOF) {

		switch (opt) {
		/* long options */
		case 0:
			if (!strncmp(lgopts[option_index].name,
					OPTION_RULE_IPV4,
					sizeof(OPTION_RULE_IPV4)))
				parm_config.rule_ipv4_name = optarg;
			break;
		default:
			print_usage(prgname);
			return -1;
		}
	}

	if (optind >= 0)
		argv[optind-1] = prgname;

	ret = optind-1;
	optind = 1; /* reset getopt lib */
	return ret;
}

/*
 * The main function, which does initialization and calls the lcore_main
 * function.
 */
int
main(int argc, char *argv[])
{
	struct rte_mempool *mbuf_pool;
	uint8_t nb_ports;
	uint16_t portid;
	int ret;
	int socket_id;

	// 以下可以在 dpdk api data struct 中查看
	struct rte_table_acl_params table_acl_params; // ACL table 的参数
	struct rte_flow_classify_table_params cls_table_params; // Parameters for table creation
	struct flow_classifier *cls_app;  // 分流器
	// 分流器的内部结构要见https://doc.dpdk.org/guides/prog_guide/flow_classify_lib.html#classifier-creation
	
	struct rte_flow_classifier_params cls_params; // classifier 的参数
	uint32_t size;

	/* Initialize the Environment Abstraction Layer (EAL). */
	ret = rte_eal_init(argc, argv); // 初始化 EAL
	if (ret < 0)
		rte_exit(EXIT_FAILURE, "Error with EAL initialization
");

	argc -= ret;
	argv += ret;

	/* parse application arguments (after the EAL ones) */
	ret = parse_args(argc, argv); // 解析 flow_classify 的命令行参数
	if (ret < 0)
		rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters
");

	/* Check that there is an even number of ports to send/receive on. */
	nb_ports = rte_eth_dev_count(); // 网口数目必须是偶数
	if (nb_ports < 2 || (nb_ports & 1))
		rte_exit(EXIT_FAILURE, "Error: number of ports must be even
");

	/* Creates a new mempool in memory to hold the mbufs. */
	// 创建mempool
	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());

	if (mbuf_pool == NULL)
		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool
");

	/* Initialize all ports. */
	RTE_ETH_FOREACH_DEV(portid) // 端口初始化 与basicfw的一样
		if (port_init(portid, mbuf_pool) != 0)
			rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "
",
					portid);

	if (rte_lcore_count() > 1) // 只需要一个逻辑核心
		printf("
WARNING: Too many lcores enabled. Only 1 used.
");

	socket_id = rte_eth_dev_socket_id(0); // 返回 0 号网口所在的NUMA socket id号

	/* Memory allocation */
	// 为分流器 cls_app 分配内存
	size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));// 返回大于或等于宏定义参数的第一个缓存对齐值
	cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); // DPDK的malloc:从调用该函数的核上的同一个NUMA socket的大页面区域分配堆内存。
															// zmalloc 就是清零 与 calloc 相似
	/* rte_zmalloc 参数三个:
		1. 指示这块区域分配给怎样的object类型。用于debug用途。可以写NULL
		2. size (in bytes) to be allocated,这里分配一个cache缓存行的字节。
		3. align
			if 0, 会返回一个适合任何类型变量的指针,就像 malloc
			否则,返回一个内存区域是 align 的对齐倍数,显然最小对齐是高速缓存行大小,宏:RTE_CACHE_LINE_SIZE
	*/
	if (cls_app == NULL) // 分配内存失败
		rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory
");

	// classifier 的参数 有两个: name 和 socket id
	// 需要在调用 create() API 之前由应用程序初始化
	cls_params.name = "flow_classifier";
	cls_params.socket_id = socket_id;

	// 调用 rte_flow_classifier_create() 函数来创建rte_flow_classifier对象。
	// 参数是 rte_flow_classifier_params 结构体指针
	cls_app->cls = rte_flow_classifier_create(&cls_params);
	if (cls_app->cls == NULL) { // 创建失败
		rte_free(cls_app);
		rte_exit(EXIT_FAILURE, "Cannot create classifier
");
	}

	/* initialise ACL table params */
	// 填写 ACL 的初始化参数
	// 四个字段:
	table_acl_params.name = "table_acl_ipv4_5tuple"; // ACL的名字
	table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; // 表中最大ACL规则数量:91 
	table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); // 一条ACL规则中的有多少个字段(fields)
	//宏定义如下:#define RTE_DIM(a) (sizeof (a) / sizeof ((a)[0])) 直观看就是返回数组的长度。

	memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); 
	//  ACL rule 的详细内容 specification
	//  ACL 规则的字段也必须由应用程序初始化。

	/* initialise table create params */
	// 填写 表 的创建参数
	// 三个字段:
	cls_table_params.ops = &rte_table_acl_ops; //表操作(特定于每个表类型),(todo:这里不清楚具体是怎么操作的
	cls_table_params.arg_create = &table_acl_params; // 传递给表的用于创建的参数 这里是ACL的初始化参数结构体的指针
	cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; // table's type,是一个 enum 

	// rte_flow_classify_table_create() 向classifier对象添加一个表。
	// 参数两个:1. 流分类器的指针 2. 表创建的参数
	ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
	if (ret) { // 返回值:成功时返回 0
		rte_flow_classifier_free(cls_app->cls);
		rte_free(cls_app);
		rte_exit(EXIT_FAILURE, "Failed to create classifier table
");
	}

	/* read file of IPv4 5 tuple rules and initialize parameters
	 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
	 * API's.
	 */
	// 然后它读取ipv4_rules_file.txt文件,验证流规则是否合法,然后初始化rte_flow_classify_table_entry_add() API 的参数,使用此API将规则添加到ACL表。
	if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
		rte_flow_classifier_free(cls_app->cls);
		rte_free(cls_app);
		rte_exit(EXIT_FAILURE, "Failed to add rules
");
	}

	/* Call lcore_main on the master core only. */ // todo
	lcore_main(cls_app);

	return 0;
}

基本看完了,但开头有很多结构体和宏定义,没有办法在 API doc 中找到确切的页面。第一个是因为 DPDK src code 中对那些数据结构有经常的改动,文档上的改动没有跟上。还有就是有用到一些 Intel 各种宏定义,并不是在 DPDK 的 API doc 中有体现。

flow_classify 这个程序做的事情分为如下几步骤:

  1. EAL初始化、端口初始化、分配内存等,与basicfw是一样的。
  2. 创建 flow_classifer对象。这一个过程在代码中体现好几个阶段:为classifier分配内存、填写 ACL 的初始化参数、填写 table 的初始化参数、创建 classifer 对象。
  3. 读取 ipv4_rules_file.txt 这个文件,文件中一行是一个规则,一行的内容是一个ipv4的五元组。如果符合输入的合法性验证要求,就把里面的内容,提成特定的数据结构,插入到 classifer 里。2、3两步过程中封装了多层,还涉及非常多的数据结构和API。不容易搞懂。(其实也不需要完全搞懂,我后面有说,继续往下看)
  4. 添加完规则后进入lcore_main主线程,死循环收包(参照basicfw)。每次收上来的一堆包,就对 classifier 里的每条规则进行都 query,用到DPDK的API。如果其中有符合规则的packet(也就是query rule 匹配),就会在对应 rule 的 counter 加 1 并显示 counter 的数字(匹配成功次数),失败的话就显示“没有匹配到这条规则”的提示语句。然后不论匹配是否成功,都把这批包从另一个端口转发了。

我们可以看看 ipv4_rules_file.txt 这个文件的内容:

#src_ip/masklen dst_ip/masklen src_port : mask dst_port : mask proto/mask priority
#
2.2.2.3/24 2.2.2.7/24 32 : 0xffff 33 : 0xffff 17/0xff 0
9.9.9.3/24 9.9.9.7/24 32 : 0xffff 33 : 0xffff 17/0xff 1
9.9.9.3/24 9.9.9.7/24 32 : 0xffff 33 : 0xffff 6/0xff 2
9.9.8.3/24 9.9.8.7/24 32 : 0xffff 33 : 0xffff 6/0xff 3
6.7.8.9/24 2.3.4.5/24 32 : 0x0000 33 : 0x0000 132/0xff 4
6.7.8.9/32 192.168.0.36/32 10 : 0xffff 11 : 0xffff 6/0xfe 5
6.7.8.9/24 192.168.0.36/24 10 : 0xffff 11 : 0xffff 6/0xfe 6
6.7.8.9/16 192.168.0.36/16 10 : 0xffff 11 : 0xffff 6/0xfe 7
6.7.8.9/8 192.168.0.36/8 10 : 0xffff 11 : 0xffff 6/0xfe 8

可以看到,DPDK 在 classify flow 中对 flow 的定义是根据 IPv4 的五元组 + 优先级来的,优先级就是如果有一个包同时满足了多条规则,则匹配的是优先级最高的那一条。

综上所述,这个flow_classify 的程序的功能就是首先,在文件ipv4_rules_file.txt 中预设一些五元组 + 优先级的 rules,然后运行这个程序。在网口收包时,如果收到了满足某条 rule 的流,则会提示并在相对应的 rule 上计数。由于代码太复杂,所以我们不需要对代码进行修改或自行编程,只需修改ipv4_rules_file.txt 这个文件的内容后,运行自带的程序即可。DPDK还有一个 sample 叫做flow_filtering,我猜想大部分程序内容应该会和flow_classify是相似的,区别会体现在lcore_main主线程中,flow_filtering会把不满足流规则的包丢弃。

运行情况

root@ubuntu:/home/chang/dpdk/examples/flow_classify/build# ./flow_classify -c 1 -n 4 -- --rule_ipv4="../ipv4_rules_file.txt"
EAL: Detected 8 lcore(s)
EAL: No free hugepages reported in hugepages-1048576kB
EAL: Multi-process socket /var/run/.rte_unix
EAL: Probing VFIO support...
EAL: PCI device 0000:02:01.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 8086:100f net_e1000_em
EAL: PCI device 0000:02:02.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 8086:100f net_e1000_em
EAL: PCI device 0000:02:03.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 8086:100f net_e1000_em
EAL: PCI device 0000:02:04.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 8086:100f net_e1000_em
Port 0 MAC: 00 0c 29 f7 4d 25
Port 1 MAC: 00 0c 29 f7 4d 2f
table_entry_delete succeeded [7]


Core 0 forwarding packets. [Ctrl+C to quit]

rule [0] query failed ret [-22]

rule [1] query failed ret [-22]

rule [2] query failed ret [-22]

rule [3] query failed ret [-22]

rule [4] query failed ret [-22]

rule [5] query failed ret [-22]

rule [6] query failed ret [-22]

rule [7] query failed ret [-22]

rule [8] query failed ret [-22]

rule [0] query failed ret [-22]

rule [1] query failed ret [-22]

rule [2] query failed ret [-22]

rule [3] query failed ret [-22]

rule [4] query failed ret [-22]

rule [5] query failed ret [-22]

rule [6] query failed ret [-22]

rule [7] query failed ret [-22]

rule [8] query failed ret [-22]

rule [0] query failed ret [-22]

rule [1] query failed ret [-22]

rule [2] query failed ret [-22]

rule [3] query failed ret [-22]

rule [4] query failed ret [-22]

rule [5] query failed ret [-22]

rule [6] query failed ret [-22]

rule [7] query failed ret [-22]

rule [8] query failed ret [-22]

我没有改动原来自带的规则文件,因此不会有匹配成功,提示的都是匹配失败。下一步的思路可以是熟悉pktgen等发包工具的使用,发出特定五元组的包,并在规则文件中修改,使其匹配。

reference

原文地址:https://www.cnblogs.com/ZCplayground/p/9330696.html