[CVPR2017] Visual Translation Embedding Network for Visual Relation Detection 论文笔记

 http://www.ee.columbia.edu/ln/dvmm/publications/17/zhang2017visual.pdf

Visual Translation Embedding Network for Visual Relation Detection Hanwang Zhang† , Zawlin Kyaw‡ , Shih-Fu Chang† , Tat-Seng Chua‡ †Columbia University, ‡National University of Singapore

亮点

  • 视觉关系预测问题的分析与化简:把一种视觉关系理解为在特征空间从主语到宾语的一种变换,很有效、很直白
  • 实验设计的很棒,从多角度进行了分析对比:语言空间划分,多任务对物体检测的提升,零次学习等。

现有工作

  • Mature visual detection [16, 35] 
  • Burgeoning visual captioning and question answering [2, 4]
    • directly bridge the visual model (e.g., CNN) and the language model (e.g., RNN), but fall short in modeling and understanding the relationships between objects. 
    • poor generalization ability
  • Visual Relation Detection: a visual relation as a subject-predicate-object triplet
    • joint models, a relation triplet is considered as a unique class [3, 9, 33, 37]. 
      • the long-tailed distribution is an inherent defect for scalability. 
    • separate model
      • modeling the large visual variance of predicates is challenging.
    • language priors to boost relation detection

主要思想

Translation Embedding 视觉关系预测的难点主要是:对于N个物体和R种谓语,有N^2R种关系,是一个组合爆炸问题。解决这个问题常用的办法是:

  • 估计谓语,不估计关系,缺点:对于不同的主语、宾语,图像视觉差异巨大

受Translation Embedding (TransE) 启发,文章中将视觉关系看作在特征空间上从主语到宾语的一种映射,在低维空间上关系元组可看作向量变换,例如person+ride ≈ bike. 

 

Knowledge Transfer in Relation 物体的识别和谓语的识别是互惠的。通过使用类别名、位置、视觉特征三种特征和端对端训练网络,使物体和谓语之前的隐含关系在网络中能够学习到。

 

算法

 

 

Visual Translation Embedding

 Loss function

 

Feature Extraction Layer

classname + location + visual feature 不同的特征对不同的谓语(动词、介词、空间位置、对比)都有不一样的作用

 

Bilinear Interpolation

In order to achieve object-relation knowledge transfer, the relation error should be back-propagated to the object detection network and thus refines the objects. We replace the RoI pooling layer with bilinear interpolation [18]. It is a smooth function of two inputs:

 

结果

Translation embeding: +18%

object detection +0.6% ~ 0.3%

State-of-art: 

  • Phrase Det.  +3% ~ 6%
  • Relation Det. +1%
  • Retrieval -1% ~ 2%
  • Zero-shot phrase detection
  • Phrase Det. -0.7% (without language prior)
  • Relation Det. -1.4%
  • Retrieval +0.2%

问题

  • 两个物体之间可能有多种关系,比如person ride elephant,同时也存在person short elephant但是文章中的方法无法表示多样化的关系
  • 没有使用语言先验知识,使用多模态信息可能会有所提升

 

 

原文地址:https://www.cnblogs.com/Xiaoyan-Li/p/8555235.html