莫比乌斯反演

一.预备知识

积性函数的内容在另外一篇随笔中。

二.重要知识

关于莫比乌斯反演,有很多很好的博客,这里推荐几个
莫比乌斯反演入门 对于这篇博客中的内容,只需要知道 (mu) 其实是一种容斥系数即可,具体的乱七八糟的过程无需理会
莫比乌斯反演简要笔记

(一)莫比乌斯函数

1.莫比乌斯函数 (mu(n)) 的性质

  • (n=p_{1}^{k_{1}}*p_{2}^{k_{2}}*...*p_{m}^{k_{m}}),其中 (p) 为素数,那么

[mu(n)=egin{cases} 1 quadquadquadquad n=1 \\ (-1)^{m} quad prod_{i=1}^{m}k_{i}=1 \\ 0 quadquadquadquad otherwise end{cases}]

  • 莫比乌斯函数是积性函数,即(mu(a)mu(b)=mu(a cdot b))

  • (sum_{d|n} mu(d)=[n=1]) ,这一点根据二项式定理即可证明

2.线性筛莫比乌斯函数

需要用到的性质
根据 (mu) 的性质可以得到,如果 (n=p*m) ,其中 (p)(n) 的质因子,如果 (p|m) 那么显然 (mu(n)=0) ,否则 (mu(n)=-mu(m))

miu[1]=1;
For (i,2,n) {
	if (!vis[i]) {
		p[++N]=i;
		miu[i]=-1;
	}
	For (j,1,N) {
		if (i*p[j]>n) break;
		vis[i*p[j]]=1;
		if (i%p[j]==0) {
			miu[i*p[j]]=0;
			break;
		}
		else
			miu[i*p[j]]=-miu[i];
	}
}

(二)莫比乌斯反演

如果 (f(n)) , (g(n)) 为数论函数,并且满足$$f(n)=sum_{d|n}g(d)$$
则有莫比乌斯反演$$g(n)=sum_{d|n}mu(d)*f(frac{n}{d})$$
证明在上面的博客中写得很清楚。
但是那个变形式的证明我一直没有弄得很明白,到底如何交换变量?

1.例题一

(bzoj2190)

[sum_{i=1}^{n}sum_{j=1}^{m}[gcd(i,j)=k] ]

[=sum_{i=1}^{leftlfloor frac{n}{k} ight floor}sum_{j=1}^{leftlfloor frac{m}{k} ight floor}[gcd(i,j)=1] ]

因为

[sum_{d|n}^{n}mu(d)=[n=1] ]

所以,可以化为

[=sum_{i=1}^{leftlfloor frac{n}{k} ight floor}sum_{j=1}^{leftlfloor frac{m}{k} ight floor}sum_{d|gcd(i,j)}mu(d) ]

改变枚举量,可以化为

[sum_{d=1}^{leftlfloorfrac{n}{k} ight floor} mu(d) leftlfloorfrac{n}{kd} ight floor leftlfloorfrac{m}{kd} ight floor ]

如果是暴力就是(O(n))的,可以用分块优化到(sqrt{n})

分块优化
因为有很多取值是连续的,对于相等的段,我们求取(mu)的前缀和,即可批量计算这一个段的答案。

ll solve(int n,int m,int k) {
	if (n>m) swap(n,m);
	n/=k; m/=k;
	ll ans=0;
	for (int i=1,nxt=1;i<=n;i=nxt+1) {
		nxt=min(n/(n/i),m/(m/i));
		ans+=1ll*(sum[nxt]-sum[i-1])*(n/i)*(m/i);
	}
	return ans;
}

2.例题二

[sum_{i=1}^{n}sum_{j=1}^{m} gcd(i,j)^k ]

一个重要的方法枚举 (dx) 的乘积

[sum_{T=1}^{n} leftlfloorfrac{n}{T} ight floor leftlfloorfrac{m}{T} ight floor sum_{d|T}d^{k}mu(frac{T}{d}) ]

然后设

[f(T)=sum_{d|T}d^{k}mu(frac{T}{d}) ]

再根据积性函数的性质化简即可

具体的过程,上面博客里有,下面对其中的几点做一下说明

  • 分块套分块的方法首先是分块(leftlfloor frac{n}{d} ight floor),因为有很多是一样的,然后再分块 (mu) 后面的那两个
  • 后面化简(f(n))的部分因为只有在 (d) 取到 (p_{i}^{x^{i}}) 或者 (p_{i}^{x^{i}-1}) 的时候 ((frac{T}{d})) 取到 (1) 或者 (p_{i}) 的时候 (mu) 值不为0。然后线筛积性函数。

注意,这道题目的解答过程对后面的题目很有帮助,一定要全部弄明白。
他推理的过程中有很多的变量都写错了,但是大体公式还是没问题的。

三.题目

(一)(bzoj2820)

[sum_{i=1}^{n}sum_{j=1}^{m}[gcd(i,j) isprime] ]

分析:
枚举质数

[=sum_psum_{i=1}^{leftlfloor frac{n}{p} ight floor}sum_{j=1}^{leftlfloor frac{m}{p} ight floor}[gcd(i,j)=1] ]

[=sum_{p}sum_{d=1}^{leftlfloor frac{n}{p} ight floor}mu(d)leftlfloor frac{n}{pd} ight floorleftlfloor frac{m}{pd} ight floor ]

然后枚举乘积(pd)

[=sum_{T=1}leftlfloor frac{n}{T} ight floor leftlfloor frac{n}{T} ight floorsum_{p|T}mu(frac{T}{p}) ]

但是,如果设

[f(T)=sum_{p|T}mu(frac{T}{p}) ]

(f(T))不是积性函数

所以需要用到一个新的方法,在预处理的时候,枚举质数 (p) ,枚举 (T) ,然后将 (p) 的每一个倍数 (T) 都加上 (mu(frac{T}{p})) ,然后求 (f(n)) 就可以做到 (O(1))
再加上前面的分块求 (T) ,因此总时间复杂度为 (O(Tsqrt{n}+maxn))

当然,还有一种方法,详情看here

最后再上代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
typedef long long ll;
typedef double dd;
#define For(i,j,k) for (int i=j;i<=k;++i)
#define Forr(i,j,k) for (int i=j;i>=k;--i)
#define Set(a,p) memset(a,p,sizeof(a))
using namespace std;

template<typename T>bool chkmax(T &a,T b) { return a<b?a=b,1:0; }
template<typename T>bool chkmin(T &a,T b) { return a>b?a=b,1:0; }

const int maxn=1e7+1e2;
const int maxx=1e7;
int n,m,N;
int p[maxn],miu[maxn],vis[maxn],sum[maxn],t[maxn];

inline void read(int &x) {
	x=0;
	int p=1;
	char c=getchar();
	while (!isdigit(c)) {if (c=='-') p=-1; c=getchar();}
	while (isdigit(c)) {x=(x<<1)+(x<<3)+(c-'0'); c=getchar();}
	x*=p;
}

inline void init() {
	miu[1]=1;
	For (i,2,maxx) {
		if (!vis[i]) {
			p[++N]=i; miu[i]=-1;
		}
		For (j,1,N) {
			if (1ll*i*p[j]>maxx) break;
			vis[i*p[j]]=1;
			if (i%p[j]==0) {
				miu[i*p[j]]=0;
				break;
			}
			else miu[i*p[j]]=-miu[i];
		}
	}
	For (i,1,N) {
		for (int j=p[i];j<=maxx;j+=p[i]) t[j]+=miu[j/p[i]];
	}
	For (i,1,maxx) t[i]=t[i-1]+t[i];
}

int main() {
	init();
	int tt; read(tt);
	while (tt--) {
		read(n); read(m);
		if (n>m) swap(n,m);
		ll ans=0;
		for (int i=1,nxt=1;i<=n;i=nxt+1) {
			nxt=min(n/(n/i),m/(m/i));
			ans+=1ll*(n/i)*(m/i)*(t[nxt]-t[i-1]);
		}
		printf("%lld
",ans);
	}
	return 0;
}

(二)(P3768)

[sum_{i=1}^{n}sum_{j=1}^{n}ijgcd(i,j) ]

[=sum_{d=1}^{n}dsum_{i=1}^{n}sum_{j=1}^{n}ij[gcd(i,j)=d] ]

[=sum_{d=1}^{n}d^3sum_{i=1}^{leftlfloor frac{n}{d} ight floor}sum_{j=1}^{leftlfloor frac{n}{d} ight floor}ij[gcd(i,j)=1] ]

[=sum_{d=1}^{n}d^3sum_{i=1}^{leftlfloor frac{n}{d} ight floor}sum_{j=1}^{leftlfloor frac{n}{d} ight floor}ijsum_{x|gcd(i,j)}mu(x) ]

[=sum_{d=1}^{n}d^3sum_{x=1}^{leftlfloor frac{n}{d} ight floor}mu(x)x^2sum_{i=1}^{leftlfloor frac{n}{dx} ight floor}sum_{j=1}^{leftlfloor frac{n}{dx} ight floor}ij ]

(F(n)=sum_{i=1}^{n}sum_{j=1}^{n}ij=sum_{i=1}^{n}i^3=(sum_{i=1}^{n})^2),所以

[=sum_{d=1}^{n}d^3sum_{x=1}^{leftlfloor frac{n}{d} ight floor}mu(x)x^2F(leftlfloor frac{n}{dx} ight floor) ]

(T=dx),改变枚举变量(干脆把向下取整去掉,反正程序中是这样的,不然写起来好麻烦)

[=sum_{T=1}^{n}sum_{d|T}d^3mu(frac{T}{d})(frac{T}{d})^2F(frac{n}{T}) ]

[=sum_{T=1}^{n}F(frac{n}{T})T^2sum_{d|T}dmu(frac{T}{d}) ]

然后,根据(mu)函数的性质,我们可以得到

[id*mu=1*varphi*mu=varepsilon*varphi=varphi ]

所以原式可化为

[=sum_{T=1}^{n}F(frac{n}{T})T^2varphi(T) ]

这看着就清爽多了!前半部分分块处理,后面杜教筛

(f(i)=i^2*varphi(i))(S(n)=sum_{i=1}^{n}f(i))

杜教筛公式:

[g(1)*S(n)=sum_{i=1}^{n}(f*g)(i)-sum_{i=2}^{n}g(i)*S(frac{n}{i}) ]

(g(x)=x^2),那么

[(f*g)(i)=sum_{d|i}f(d)*g(frac{i}{d})=sum_{d|i}d^2*varphi(d)*(frac{i}{d})^2=i^2*sum_{d|i}varphi(d)=i^3 ]

所以

[S(n)=sum_{i=1}^{n}i^3-sum_{i=2}^{n}i^2*S(frac{n}{i}) ]

再然后,就可以开始打程序了!

当然,事实上是,用 (varphi) 更简单here

[=sum_{d=1}^{n}varphi(d)sum_{d|i}sum_{d|j}ij ]

[=sum_{d=1}^{n}varphi(d) d^2 sum_{i=1}^{leftlfloor frac{n}{d} ight floor}i^3 ]

我这篇代码被卡常了,对着别人的程序调了好久,但是还是很慢,不知道为什么......
在计算(sum)(sq)是时候,(n)一进去就要取模!

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
typedef double dd;
#define For(i,j,k) for (register ll i=j;i<=k;++i)
#define Forr(i,j,k) for (register ll i=j;i>=k;--i)
#define REP(i,j,k) for (register int i=j;i<=k;++i)
#define Set(a,p) memset(a,p,sizeof(a))
#define ll long long 
using namespace std;

template<typename T>bool chkmax(T& a,T b) {return a<b?a=b,1:0;}
template<typename T>bool chkmin(T& a,T b) {return a>b?a=b,1:0;}

#define maxn 8000000+100
int maxx=8000000;
ll n,modd,Inv2,Inv6,ans;
int N,p[maxn];
ll phi[maxn];
bool vis[maxn];
map<ll,ll>Phi;

inline void init() {
	phi[1]=1;
	for (register int i=2;i<=maxx;++i) {
		if (!vis[i]) {
			p[++N]=i; phi[i]=i-1;
		}
		for (register int j=1;j<=N;++j) {
			if (i*p[j]>maxx) break;
			int k=i*p[j];
			vis[k]=1;
			if (i%p[j]==0) {
				phi[k]=phi[i]*p[j]%modd;
				break;
			}
			else phi[k]=phi[i]*(p[j]-1)%modd;
		}
	}
	for (register int i=1;i<=maxx;++i) phi[i]=(phi[i-1]+phi[i]*i%modd*i%modd)%modd;
}

inline ll quick(ll a,ll b) {
	ll s=1;
	while (b) {
		if (b&1) s=s*a%modd;
		a=a*a%modd; b>>=1;
	}
	return s;
}

inline ll sum(ll n) {
	n%=modd;
	return n*(n+1)%modd*Inv2%modd;
}

inline ll sq(ll n) {
	n%=modd;
	return n*(n+1)%modd*(n+n+1)%modd*Inv6%modd;
}

ll calc(ll n) {
	if (n<=N) return phi[n];
	if (Phi[n]) return Phi[n];
	ll s=sum(n); s=s*s%modd;
	for (ll i=2,nxt;i<=n;i=nxt+1) {
		nxt=n/(n/i);
		s-=(sq(nxt)-sq(i-1))*calc(n/i)%modd; s%=modd;
	}
	Phi[n]=(s+modd)%modd;
	return (s+modd)%modd;
}

int main() {
	scanf("%lld%lld",&modd,&n);
	Inv2=quick(2,modd-2); Inv6=quick(6,modd-2);
	init();
	for (ll i=1,nxt=1;i<=n;i=nxt+1) {
		nxt=n/(n/i);
		ll ss=sum(n/i); ss=ss*ss%modd;
		ans+=ss*(calc(nxt)-calc(i-1))%modd;
		ans=(ans+modd)%modd;
	}
	printf("%lld
",(ans+modd)%modd);
	return 0;
}

(三)(bzoj2693)(P4313)

[sum_{i=1}^{n}sum_{i=1}^{m}lcm(i,j) ]

ymy大佬的博客中推导过程和我一样的,所以我就懒得写了

[=sumlimits_{i=1}^nsumlimits_{j=1}^m frac{ij}{gcd(i,j)} ]

[=sumlimits_{d=1}^n frac{1}{d}sumlimits_{i=1}^{n}sumlimits_{j=1}^{m} ij[gcd(i,j)=d] =sumlimits_{d=1}^n dsumlimits_{i=1}^{lfloorfrac{n}{d} floor}sumlimits_{j=1}^{lfloorfrac{m}{d} floor} ij[gcd(i,j)=1]]

[=sumlimits_{d=1}^n dsumlimits_{i=1}^{lfloorfrac{n}{d} floor}sumlimits_{j=1}^{lfloorfrac{m}{d} floor} ijsumlimits_{x|gcd(i,j)}mu(x) =sumlimits_{d=1}^n dsumlimits_{x=1}^{lfloorfrac{n}{d} floor}mu(x)x^2sumlimits_{i=1}^{lfloorfrac{n}{dx} floor}sumlimits_{j=1}^{lfloorfrac{m}{dx} floor} ij]

(f(T)=sumlimits_{i=1}^{lfloorfrac{n}{T} floor}sumlimits_{j=1}^{lfloorfrac{m}{T} floor} ij=sumlimits_{i=1}^{lfloorfrac{n}{T} floor}isumlimits_{j=1}^{lfloorfrac{m}{T} floor}j),所以

[=sumlimits_{T=1}^n f(T)sumlimits_{d|T}mu(d)*d^2frac{T}{d} =sumlimits_{T=1}^n f(T)*Tsumlimits_{d|T}mu(d)*d]

(g(n)=sumlimits_{d|n}mu(d)*d) ,则(g) 为积性函数,可以线筛。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
typedef long long ll;
typedef double dd;
#define For(i,j,k) for (int i=j;i<=k;++i)
#define Forr(i,j,k) for (int i=j;i>=k;--i)
#define Set(a,p) memset(a,p,sizeof(a))
using namespace std;

template<typename T>bool chkmax(T& a,T b) {return a<b?a=b,1:0;}
template<typename T>bool chkmin(T& a,T b) {return a>b?a=b,1:0;}

const int maxn=10000000+100;
const int maxx=10000000;
const ll modd=100000009;
int n,m,N;
int vis[maxn],p[maxn];
ll inv;
ll f[maxn],sum[maxn];

inline void read(int &x) {
	x=0;
	int p=1;
	char c=getchar();
	while (!isdigit(c)) {if (c=='-') p=-1; c=getchar();}
	while (isdigit(c)) {x=(x<<1)+(x<<3)+(c-'0'); c=getchar();}
	x*=p;
}

inline void init() {
	f[1]=1;
	For (i,2,maxx) {
		if (!vis[i]) {
			p[++N]=i; f[i]=1-i;
		}
		For (j,1,N) {
			int k=i*p[j];
			if (k>maxx) break;
			vis[k]=1;
			if (i%p[j]==0) {
				f[k]=f[i]; break;
			}
			else f[k]=f[i]*(1-p[j])%modd;
		}
	}
	For (i,1,maxx) f[i]=(f[i-1]+f[i]*i%modd+modd)%modd;
	For (i,1,maxx) {
		sum[i]=sum[i-1]+i;
		if (sum[i]>modd) sum[i]-=modd;
	}
}

int main() {
	init();
	int tt; read(tt);
	while (tt--) {
		ll ans=0;
		read(n); read(m);
		if (n>m) swap(n,m);
		for (int i=1,nxt;i<=n;i=nxt+1) {
			nxt=min(n/(n/i),m/(m/i));
			ans+=sum[n/i]*sum[m/i]%modd*(f[nxt]-f[i-1])%modd;
			ans%=modd;
		}
		printf("%lld
",(ans+modd)%modd);
	}
	return 0;
}

(四)(bzoj3994)

(d(n))(n) 的约数个数,求

[sum_{i=1}^{n}sum_{j=1}^{m}d(ij) ]

分析:

[=sum_{i=1}^{n}sum_{j=1}^{m}sum_{p|i}sum_{q|j}[gcd(p,q)=1] ]

[=sum_{p=1}^{n}sum_{q=1}^{m}leftlfloor frac{n}{p} ight floor leftlfloor frac{m}{q} ight floor[gcd(p,q)=1] ]

[=sum_{i=1}^{n}sum_{j=1}^{m}leftlfloor frac{n}{i} ight floor leftlfloor frac{m}{j} ight floor[gcd(i,j)=1] ]

[=sum_{d=1}^{n}mu(d)sum_{i=1}^{leftlfloor frac{n}{d} ight floor}sum_{j=1}^{leftlfloor frac{m}{d} ight floor}leftlfloor frac{n}{id} ight floorleftlfloor frac{m}{id} ight floor ]

然后,一个智障的变化,我一下子还没想出来

[=sum_{d=1}^{n}mu(d)sum_{i=1}^{leftlfloor frac{n}{d} ight floor}leftlfloor frac{n}{id} ight floorsum_{j=1}^{leftlfloor frac{m}{d} ight floor}leftlfloor frac{m}{id} ight floor ]

[f(n)=sum_{i=1}^{n}leftlfloor frac{n}{i} ight floor ]

这个显然可以分块,然后就可以化为

[=sum_{d=1}^{n}mu(d)f(leftlfloor frac{n}{d} ight floor)f(leftlfloor frac{m}{d} ight floor) ]

后面的在 (O(nsqrt{n})) 预处理之后可以 (O(1)) 计算,前面的分块 (O(sqrt{n}))
总时间复杂度 (O(nsqrt{n}+Tsqrt{n}))

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
typedef long long ll;
typedef double dd;
#define For(i,j,k) for (register int i=j;i<=k;++i)
#define Forr(i,j,k) for (register int i=j;i>=k;--i)
#define Set(a,p) memset(a,p,sizeof(a))
using namespace std;

template<typename T>bool chkmax(T &a,T b) { return a<b?a=b,1:0; }
template<typename T>bool chkmin(T &a,T b) { return a>b?a=b,1:0; }

const int maxn=50000+100;
const int maxx=50000;
int n,m,N;
int p[maxn],vis[maxn],mu[maxn],sum[maxn],s[maxn];

inline void read(int &x) {
	x=0;
	int p=1;
	char c=getchar();
	while (!isdigit(c)) {if (c=='-') p=-1; c=getchar();}
	while (isdigit(c)) {x=(x<<1)+(x<<3)+(c-'0'); c=getchar();}
	x*=p;
}

inline void init() {
	mu[1]=1;
	For (i,2,maxx) {
		if (!vis[i]) {
			p[++N]=i; mu[i]=-1;
		}
		For (j,1,N) {
			if (i*p[j]>maxx) break;
			int k=i*p[j];
			vis[k]=1;
			if (i%p[j]==0) {
				mu[k]=0; break;
			}
			else mu[k]=-mu[i];
		}
	}
	For (i,1,maxx) {
		sum[i]=sum[i-1]+mu[i];
		for (int p=1,nxt=1;p<=i;p=nxt+1) {
			nxt=i/(i/p);
			s[i]+=(nxt-p+1)*(i/p);
		}
	}
}

inline void solve() {
	if (n>m) swap(n,m);
	ll ans=0;
	for (int i=1,nxt=1;i<=n;i=nxt+1) {
		nxt=min(n/(n/i),m/(m/i));
		ans+=1ll*s[n/i]*s[m/i]*(sum[nxt]-sum[i-1]);
	}
	printf("%lld
",ans);
}

int main() {
	init();
	int tt; read(tt);
	while (tt--) {
		read(n); read(m);
		solve();
	}
	return 0;
}
原文地址:https://www.cnblogs.com/Wuweizheng/p/8640309.html