PointNet 零件分割代码复现

 

 

只用了200个数据集

以上是在复现代码时的一些发现记录

现在是将分类代码和分割代码写到了一起,事先重新规划了一下分类代码的编排

文件夹:

 configuration.py

import torch


class config():
    batch_size = 4
    num_epochs = 10
    num_classes = 40
    num_seg = 50
    num_workers = 0
    clacheckpoints_root = 'C:/Users/Dell/PycharmProjects/PointNet/clacheckpoints'
    segcheckpoints_root = 'C:/Users/Dell/PycharmProjects/PointNet/segcheckpoints'
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    clalog_dir = 'C:/Users/Dell/PycharmProjects/PointNet/clacheckpoints/clalog'
    seglog_dir = 'C:/Users/Dell/PycharmProjects/PointNet/segcheckpoints/seglog'
View Code

my_Dataset.py

import numpy as np
import h5py
import torch
import random
import torchvision.transforms as transforms
from torch.utils import data
import os


#dataset要做个转置并变成tensor

#classify dataset
class Dataset(data.Dataset):
    def __init__(self, root):
        super(Dataset, self).__init__()
        file = h5py.File(root, 'r')
        self.data = file['data'][:]
        #label要展开并变成一维的
        self.label = file['label'][:].reshape(-1, file['label'].shape[0]).squeeze(0)
    def __getitem__(self, index):
        #一个点云坐标输入进来时是n * 3,不像图片是n * m * 3,点云坐标没有高度,x、y、z分别代表三个通道
        #图片用ToTensor变成3 * n * m, 点云坐标转置一下就行了,变成3 * n,然后再变成tensor
        return torch.tensor(self.data[index].T), self.label[index]
    def __len__(self):
        return len(self.label)

#segmentation dataset
class Seg_Dataset(data.Dataset):
    def __init__(self, data_root, label_root):
        super().__init__()
        self.data_root = data_root
        self.label_root = label_root
        self.data_file = os.listdir(data_root)
        self.label_file = os.listdir(label_root)
        self.data_file = sorted(self.data_file, key = lambda x : int(x.split('.')[0]))
        self.label_file = sorted(self.label_file, key = lambda x : int(x.split('.')[0]))

    def __getitem__(self, index):
        self.data = np.loadtxt(os.path.join(self.data_root, self.data_file[index]))
        self.label = np.loadtxt(os.path.join(self.label_root, self.label_file[index]))

        #采样2500个点,如果不够,则随机抽样补全
        if self.data.shape[0] >= 2500:
            sample_list = random.sample(range(self.data.shape[0]), 2500)
            self.data = self.data[sample_list, :]
            self.label = self.label[sample_list]
        else:
            sample_list = random.sample(range(self.data.shape[0]), 2500 - self.data.shape[0])
            dup_data = self.data[sample_list, :]
            dup_label = self.label[sample_list]
            self.data = np.concatenate([self.data, dup_data], 0)
            self.label = np.concatenate([self.label, dup_label], 0)

        self.label = torch.tensor(self.label)
        self.label = self.label.type(torch.LongTensor)
        self.data = torch.tensor(self.data.T)
        #label要是Longtensor,data要是float32
        self.data = self.data.to(torch.float32)

        return self.data, self.label

    def __len__(self):
        return len(self.label_file)
View Code

Model.py

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from configuration import config

device = 'cuda' if torch.cuda.is_available() else 'cpu'

con = config()

#T-Net:将点云传进来,生成一个矩阵,+E后return

class T_Net(nn.Module):
    def __init__(self, k):
        super().__init__()
        self.k = k
        self.conv1 = nn.Conv1d(self.k, 64, 1)
        self.conv2 = nn.Conv1d(64, 128, 1)
        self.conv3 = nn.Conv1d(128, 1024, 1)
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, self.k * self.k)

        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(1024)
        self.bn4 = nn.BatchNorm1d(512)
        self.bn5 = nn.BatchNorm1d(256)


    def forward(self, x):
        bs = x.size(0)
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.relu(self.bn3(self.conv3(x)))
        x = F.max_pool1d(x, x.size(-1))
        x = x.view(x.size(0), -1)
        x = F.relu(self.bn4(self.fc1(x)))
        x = F.relu(self.bn5(self.fc2(x)))
        x = self.fc3(x)
        #生成一个3 * 3单位矩阵E,并将其扩充为bs个3 * 3的,repeat中的两个1表示3 * 1,3 * 1,
        #即为两个系数k、m,使得扩充后行列分别为,行 * k, 列 * m
        E = torch.eye(self.k, requires_grad = True).repeat(bs, 1, 1)
        E.to(device)
        matrix = x.view(-1, self.k, self.k) + E
        return matrix


#Backbone Net
class PNet(nn.Module):
    def __init__(self, flag):
        self.flag = flag
        super(PNet, self).__init__()
        self.input_transform = T_Net(k = 3)
        self.feature_transform = T_Net(k = 64)
        self.conv1 = nn.Conv1d(3, 64, 1)
        self.conv2 = nn.Conv1d(64, 128, 1)
        self.conv3 = nn.Conv1d(128, 1024, 1)


        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(1024)


    def forward(self, x):
        input_matrix = self.input_transform(x)
        x = torch.bmm(torch.transpose(x, 1, 2), input_matrix).transpose(1, 2)
        x = F.relu(self.bn1(self.conv1(x)))
        feature_matrix = self.feature_transform(x)
        x = torch.bmm(x.transpose(1, 2), feature_matrix).transpose(1, 2)
        local_feature = x
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.bn3(self.conv3(x))
        #3 * n的点云坐标经过一系列卷积层之后,变成了1024 * n的
        #经过max_pool求1024维的每一维最大值,变成了1024 * 1
        #max_pool1d的第二个参数表示池化的范围,当然是n,-1表示size的倒数第一个
        x = F.max_pool1d(x, x.size(-1))
        if self.flag == 'Seg':
            x = x.view(-1, 1024, 1).repeat(1, 1, local_feature.size(-1))
            x = torch.cat([x, local_feature], 1)

        return x, input_matrix, feature_matrix


class Cla_Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.PNet = PNet('Cla')
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, con.num_classes)

        self.bn1 = nn.BatchNorm1d(512)
        self.bn2 = nn.BatchNorm1d(256)

        self.dropout = nn.Dropout(0.3)
    def forward(self, x):
        x, input_matrix, feature_matrix = self.PNet(x)

        x = x.view(x.size(0), -1)
        x = F.relu(self.bn1(self.fc1(x)))
        x = F.relu(self.bn2(self.dropout(self.fc2(x))))
        x = self.fc3(x)

        return F.log_softmax(x, dim = 1), input_matrix, feature_matrix


class Seg_Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.PNet = PNet('Seg')
        self.conv1 = nn.Conv1d(1088, 512, 1)
        self.conv2 = nn.Conv1d(512, 256, 1)
        self.conv3 = nn.Conv1d(256, 128, 1)
        self.conv4 = nn.Conv1d(128, con.num_seg, 1)

        self.bn1 = nn.BatchNorm1d(512)
        self.bn2 = nn.BatchNorm1d(256)
        self.bn3 = nn.BatchNorm1d(128)
    def forward(self, x):
        x, input_matirx, feature_matrix = self.PNet(x)
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.relu(self.bn3(self.conv3(x)))
        x = self.conv4(x)
        #现在x是bs * k * n,logsoftmax只能用于二维,而且我们一般对每一行进行softmax
        #因此,先变成bs * n * k,然后-1 * k, logsoftmax之后,再变回到bs * n * k
        x = x.transpose(2, 1).contiguous()
        x = F.log_softmax(x.view(-1, con.num_seg), dim = 1)
        return x, input_matirx, feature_matrix
View Code

train.py

import torch
import torch.nn as nn
import torch.utils.data.dataloader as Dataloader
from tqdm import tqdm
from my_Dataset import Dataset, Seg_Dataset
from Model import Cla_Net, Seg_Net
from configuration import config
import os
from tensorboardX import SummaryWriter
import numpy as np


con = config()

def loss_funtion(output, label, input_matrix, featrue_matrix, alpha = 0.0001):
    loss = nn.NLLLoss()
    bs = con.batch_size
    E_3 = torch.eye(3, requires_grad = True).repeat(bs, 1, 1)
    E_64 = torch.eye(64, requires_grad = True).repeat(bs, 1, 1)
    E_3.to(con.device)
    E_64.to(con.device)
    diff3 = E_3 - torch.bmm(input_matrix, input_matrix.transpose(1, 2))
    diff64 = E_64 - torch.bmm(featrue_matrix, featrue_matrix.transpose(1, 2))
    #注意label要是int64类型
    label = label.type(torch.LongTensor)
    return loss(output, label) + alpha * (torch.norm(diff3) + torch.norm(diff64)) / float(bs)



def Cla_train():
    data_path = 'H:/DataSet/modelnet40_ply_hdf5_2048/ply_data_train0.h5'
    dataset = Dataset(data_path)
    dataloader = Dataloader.DataLoader(dataset, batch_size = con.batch_size, shuffle = True, num_workers = con.num_workers)
    model = Cla_Net()
    model.to(con.device)
    optimizer = torch.optim.Adam(model.parameters(), lr = 0.01)
    tbwriter = SummaryWriter(logdir = con.clalog_dir)
    for epoch in range(con.num_epochs):
        total_loss = 0
        total_true = 0
        cnt = 0
        total_img = 0
        for data, label in tqdm(dataloader):
            data.to(con.device)
            label.to(con.device)
            optimizer.zero_grad()
            output, input_matrix, feature_matrix = model(data)
            loss_value = loss_funtion(output, label, input_matrix, feature_matrix)
            loss_value.backward()
            optimizer.step()
            pred = torch.max(output, 1)[1]
            total_true += torch.sum(pred == label)
            total_loss += loss_value
            cnt += 1
            total_img += len(label)
        tbwriter.add_scalar('Loss', total_loss / float(cnt), epoch)
        tbwriter.add_scalar('Accuracy', total_true / float(total_img), epoch)

        print('Loss:{:.4f}, Accuracy:{:.2f}'.format(total_loss / float(cnt), total_true / float(total_img)))
        if (epoch + 1) % 10 == 0:
            state = {
                'model': model.state_dict()
            }
            torch.save(state, os.path.join(con.clacheckpoints_root, 'clacheckpoint_{}.pkl'.format(epoch + 1)))


    print('Train Accepted')


def Seg_train():
    tbwriter = SummaryWriter(logdir = con.seglog_dir)
    data_root = 'H:/DataSet/shapenet/data'
    label_root = 'H:/DataSet/shapenet/label'
    dataset = Seg_Dataset(data_root, label_root)
    dataloader = Dataloader.DataLoader(dataset, batch_size = con.batch_size, shuffle = True, num_workers = con.num_workers)
    model = Seg_Net()
    model.to(con.device)
    optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)
    model.train()
    for epoch in range(con.num_epochs):
        total_true = 0
        total_loss = 0
        cnt = 0
        for data, label in tqdm(dataloader):
            optimizer.step()
            data.to(con.device)
            label.to(con.device)

            output, input_matrix, feature_matrix = model(data)
            #二维张量变一维
            label = label.view(-1, 1)[:, 0] - 1
            loss_value = loss_funtion(output, label, input_matrix, feature_matrix)
            loss_value.backward()
            optimizer.step()
            pred = torch.max(output, 1)[1]

            total_loss += loss_value.item()
            total_true += torch.sum(pred == label)
            cnt += 1
        loss_mean = total_loss / float(cnt)
        accuracy = total_true / float(len(dataset) * 2500)
        tbwriter.add_scalar('Loss', loss_mean, epoch)
        tbwriter.add_scalar('Accuracy', accuracy, epoch)
        print('Loss:{:.4f}, Accuracy:{:.4f}'.format(loss_mean, accuracy))
        if (epoch + 1) % con.num_epochs == 0:
            state = {
                'model': model.state_dict()
            }
            torch.save(state, os.path.join(con.segcheckpoints_root, 'segcheckpoint_{}.pkl'.format(epoch + 1)))
    model.eval()
    shape_iou = []
    for data, label in tqdm(dataloader):
        data.to(con.device)
        label.to(con.device)
        output,input_matrix, feature_matrix = model(data)
        output = output.view(con.batch_size, -1, con.num_seg)
        output = output.cpu().data.numpy()

        label = label.cpu().data.numpy() - 1
        output = np.argmax(output, 2)
        for i in range(label.shape[0]):
            part_iou = []
            for part in range(con.num_seg):
                I = np.sum(np.logical_and(output[i] == part, label[i] == part))
                U = np.sum(np.logical_or(output[i] == part, label[i] == part))
                if U == 0:
                    iou = 1
                else:
                    iou = I / float(U)
                part_iou.append(iou)
            shape_iou.append(np.mean(part_iou))
    print('mIOU:{:.2f}'.format(np.mean(shape_iou)))


if __name__ == '__main__':
    #Cla_train()
    Seg_train();
View Code

test.py

import torch
import torch.nn
import torch.utils.data.dataloader as Dataloader
from configuration import config
from my_Dataset import Dataset, Seg_Dataset
from Model import Cla_Net, Seg_Net
import os
import numpy as np
from to_use import show_3d

con = config()
def Cla_test():
    model = Cla_Net()
    checkpoint = torch.load(os.path.join(con.clacheckpoints_root, 'clacheckpoint_10.pkl'))
    model.load_state_dict(checkpoint['model'])
    model.to(con.device)
    dataset = Dataset('H:/DataSet/modelnet40_ply_hdf5_2048/ply_data_test0.h5')
    dataloader = Dataloader.DataLoader(dataset, batch_size=2, shuffle = True)
    cnt = 0
    for data, label in dataloader:
        data.to(con.device)
        output = model(data)[0]
        pred = torch.max(output, 1)[1]
        print(pred, label)
        cnt += 1
        if cnt == 20:
            break


def Seg_test():
    model = Seg_Net()
    checkpoint = torch.load(os.path.join(con.segcheckpoints_root, 'segcheckpoint_10.pkl'))
    model.load_state_dict(checkpoint['model'])
    model.to(con.device)
    model.eval()
    dataset = Seg_Dataset('H:/DataSet/shapenet/data', 'H:/DataSet/shapenet/label')
    # for i in range(len(dataset)):
    #     data, label = dataset[i]
    #     data = data.unsqueeze(0)
    #     output = model(data)[0]
    #     pred = torch.max(output, 1)[1]
    #     print(pred.numpy()[0])
    #     print(label)
    data, label = dataset[0]
    data_p = data
    data = data.unsqueeze(0)
    output = model(data)[0]
    pred = torch.max(output, 1)[1]
    data_p = data_p.T
    show_3d(np.array(data_p[:, 0]), np.array(data_p[:, 1]), np.array(data_p[:, 2]), np.array(pred))



if __name__ == '__main__':
    Seg_test()
View Code

可视化代码

执行test.py就能显示

to_use.py

import numpy as np
import mayavi.mlab as mlab

def show_3d(x, y, z, pred):
    s = pred
    p3d = mlab.points3d(x, y, z, s, colormap = 'hsv', scale_mode='none')
    mlab.show()
View Code

数据集:链接:https://pan.baidu.com/s/1YN8k8Ra5whSFzcKyZu-T-Q
提取码:89cd

自己选择的路,跪着也要走完。朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其它人怎么样,我们也能够保持自己的本色走下去。
原文地址:https://www.cnblogs.com/WTSRUVF/p/15369734.html