球性插值

1,球性插值

代码转载自:http://blog.csdn.net/ZFSR05255134/article/details/51075668

根据文章介绍本人对球面插值理解如图

using UnityEngine;  
using System.Collections;  
  
/// <summary>  
/// 在日出和日落之间动画弧线  
/// 网上看到有人对Vector3.Slerp()的详解,但是经过962f之力将他的思路看明白。  
/// 受到启发,就有了自己对Vector3.Slerp()的理解。tt2()函数、tt3()函数是自己的写的,tt4()是别人的。  
/// tt2()函数球形插值  
/// tt3()函数利用球形插值绘制类似抛物线。  
/// </summary>  
  
public class Vector3_Slerp_2 : MonoBehaviour  
{  
    /// <summary>  
    /// 日出  
    /// </summary>  
    public Transform sunrise;  
    /// <summary>  
    /// 日落  
    /// </summary>  
    public Transform sunset;  
  
    /// <summary>  
    /// 计算中间点的一个因素  
    /// </summary>  
    public float m_centerFac = 0.5f;  
    /// <summary>  
    /// 插值中心点的影响因素  
    /// </summary>  
    public float m_moveTowardsValue = 1f;  
    /// <summary>  
    /// 插值的个数  
    /// </summary>  
    public int m_lineNum = 30;  
  
    private Vector3 mStart = Vector3.zero;  
    private Vector3 mEnd = Vector3.zero;  
  
    void Update()  
    {  
        //tt2();  
        tt3();  
        //tt4();  
    }  
  
    /// <summary>  
    /// 官方用例  
    /// </summary>  
    private void tt1()  
    {  
        //弧线的中心  
        Vector3 center = (sunrise.position + sunset.position) * 0.5f;  
  
        //向下移动中心,垂直于弧线  
        center -= new Vector3(0, 1, 0);  
  
        //相对于中心在弧线上插值  
        Vector3 riseRelCenter = sunrise.position - center;  
        Vector3 setRelCenter = sunset.position - center;  
  
        transform.position = Vector3.Slerp(riseRelCenter, setRelCenter, Time.time);  
        transform.position += center;  
    }  
  
    /// <summary>  
    ///  球面插值  
    ///  自己的理解  
    ///  只在垂直平面上做球面插值。  
    /// </summary>  
    private void tt2()  
    {  
        mStart = sunrise.position;  
        mEnd = sunset.position;  
  
        /// 绘制世界坐标系  
        Debug.DrawLine(new Vector3(-100, 0, 0), new Vector3(100, 0, 0), Color.green);  
        Debug.DrawLine(new Vector3(0, -100, 0), new Vector3(0, 100, 0), Color.green);  
        Debug.DrawLine(new Vector3(0, 0, -100), new Vector3(0, 0, 100), Color.green);  
          
        /// 求出起始点与终点的中心点  
        Vector3 center = (mStart + mEnd) * m_centerFac;  
  
        ////////////////////////////////////  
        /// 1. center、mStart、mEnd 构成一个平面A  
        ////////////////////////////////////  
  
        Debug.DrawLine(new Vector3(center.x, 0f, center.z), center, Color.white);  
  
        /// 绘制一个三角形  
        Debug.DrawLine(new Vector3(center.x, 0f, center.z), mStart, Color.white);  
        Debug.DrawLine(new Vector3(center.x, 0f, center.z), mEnd, Color.white);  
        Debug.DrawLine(mStart, mEnd, Color.white);  
  
        Vector3 normal = mEnd - mStart;  
        ///只在垂直平面上做球面插值。  
        Vector3 tangent = new Vector3(center.x, 0f, center.z) - center;  
  
         
        /// 两个坐标轴的正交化。  
        Vector3.OrthoNormalize(ref normal, ref tangent);  
        float moveTowardsValue = (mEnd - mStart).magnitude * m_moveTowardsValue;  
        Vector3 center2 = center + tangent * moveTowardsValue;  
  
        ////////////////////////////////////  
        /// 2. 两个坐标轴的正交化后 center2、mStart、mEnd 构成一个平面B,  
        /// 3. 平面B与平面A是同一平面。  
        ////////////////////////////////////  
  
        Debug.DrawLine(center2, mStart, Color.blue);  
        Debug.DrawLine(center2, mEnd, Color.blue);  
        Debug.Log(string.Format("{0} : {1}", Vector3.Distance(center2, mStart), Vector3.Distance(center2, mEnd)));  
  
        for (int i = 1; i < m_lineNum; ++i)  
        {  
            Vector3 drawVec = Vector3.Slerp(mEnd - center2, mStart - center2, 1f / m_lineNum * i);  
            drawVec += center2;  
            Debug.DrawLine(center2, drawVec, Color.yellow);  
        }  
  
        /// 绘制起始点与终点的中心点到计算出的插值的中心点  
        Debug.DrawLine(center, center2, Color.black);  
    }  
  
    /// <summary>  
    ///  利用球面插值模拟抛物线  
    ///  自己的理解  
    /// </summary>  
    private void tt3()  
    {  
        mStart = sunrise.position;  
        mEnd = sunset.position;  
  
        /// 绘制世界坐标系  
        Debug.DrawLine(new Vector3(-100, 0, 0), new Vector3(100, 0, 0), Color.green);  
        Debug.DrawLine(new Vector3(0, -100, 0), new Vector3(0, 100, 0), Color.green);  
        Debug.DrawLine(new Vector3(0, 0, -100), new Vector3(0, 0, 100), Color.green);  
  
        /// 求出起始点与终点的中心点  
        Vector3 center = mEnd + (mStart - mEnd) * m_centerFac;  
  
        ////////////////////////////////////  
        /// 1. center、mStart、mEnd 构成一个平面A  
        ////////////////////////////////////  
  
        Debug.DrawLine(new Vector3(center.x, mEnd.y, center.z), center, Color.white);  
  
        /// 绘制一个三角形  
        Debug.DrawLine(new Vector3(center.x, mEnd.y, center.z), mStart, Color.white);  
        Debug.DrawLine(new Vector3(center.x, mEnd.y, center.z), mEnd, Color.white);  
        Debug.DrawLine(mStart, mEnd, Color.white);  
  
        Vector3 normal = mStart - mEnd;  
        ///只在垂直平面上做球面插值。  
        Vector3 tangent = new Vector3(center.x, mEnd.y, center.z) - center;  
  
        /// 两个坐标轴的正交化。  
        Vector3.OrthoNormalize(ref normal, ref tangent);  
        float moveTowardsValue = (mEnd - mStart).magnitude * m_moveTowardsValue;  
        //Vector3 center2 = center + tangent * moveTowardsValue;  
        Vector3 center2 = center - Vector3.up * moveTowardsValue;  
  
        ////////////////////////////////////  
        /// 2. 两个坐标轴的正交化后 center2、mStart、mEnd 构成一个平面B,  
        /// 3. 平面B与平面A是同一平面。  
        ////////////////////////////////////  
  
        Debug.DrawLine(center2, mStart, Color.blue);  
        Debug.DrawLine(center2, mEnd, Color.blue);  
        Debug.Log(string.Format("{0}:{1} -- {2}:{3}", Vector3.Distance(center2, mStart), Vector3.Distance(center2, mEnd),   
            Vector3.Distance(mEnd, mStart), Vector3.Distance(center2, center)));  
  
        for (int i = 1; i < m_lineNum; ++i)  
        {  
            Vector3 drawVec = Vector3.Slerp(mEnd - center2, mStart - center2, 1f / m_lineNum * i);  
            drawVec += center2;  
            Debug.DrawLine(center2, drawVec, Color.yellow);  
        }  
  
        /// 绘制起始点与终点的中心点到计算出的插值的中心点  
        Debug.DrawLine(center, center2, Color.black);  
    }  
  
    /// <summary>  
    /// 球面插值  
    /// http://www.manew.com/thread-43314-1-1.html 文章用例  
    /// </summary>  
    private void tt4()  
    {  
        mStart = sunrise.position;  
        mEnd = sunset.position;  
  
        Debug.DrawLine(new Vector3(-100, 0, 0), new Vector3(100, 0, 0), Color.green);  
        Debug.DrawLine(new Vector3(0, -100, 0), new Vector3(0, 100, 0), Color.green);  
        Debug.DrawLine(new Vector3(0, 0, -100), new Vector3(0, 0, 100), Color.green);  
       
        Debug.DrawLine(Vector3.zero, mStart, Color.white);  
        Debug.DrawLine(Vector3.zero, mEnd, Color.white);  
        Debug.DrawLine(mStart, mEnd, Color.white);  
  
        /// 求出起始点与终点的中心点  
        Vector3 centor = (mStart + mEnd) * 0.5f;  
        Debug.DrawLine(Vector3.zero, centor, Color.blue);  
  
        Vector3 centorProject = Vector3.Project(centor, mStart - mEnd); // 中心点在两点之间的投影  
        centor = Vector3.MoveTowards(centor, centorProject, m_moveTowardsValue);        // 沿着投影方向移动移动距离(距离越大弧度越小)  
  
        Debug.DrawLine(centor, mStart, Color.blue);  
        Debug.DrawLine(centor, mEnd, Color.blue);  
  
        Debug.Log(string.Format("{0} : {1}", Vector3.Distance(centor, mStart), Vector3.Distance(centor, mEnd)));  
  
        for (int i = 1; i < m_lineNum; ++i)  
        {  
            Vector3 drawVec = Vector3.Slerp(mEnd - centor, mStart - centor, 1f / m_lineNum * i);  
            drawVec += centor;  
            Debug.DrawLine(centor, drawVec, Color.yellow);  
            //Debug.DrawLine(centor, drawVec, 5 == i ? Color.blue : Color.yellow);  
        }  
    }  
}  

其他关于球形插值的参考文章:http://www.ituring.com.cn/article/120745

基本语法 public static Vector3 Slerp(Vector3 from, Vector3 to, float t);

其中参数from为插值起始点坐标,参数to为插值结束点坐标,参数t为插值系数。

功能说明 此方法用于返回从参数from点到参数to点的球形插值向量。例如,设现有Vector3实例A和B(如图14-15所示),则执行如下程序代码后

Vector3 C=Vector3. Slerp (from, to, t);

 当t≤0时,向量C=A;

 当t≥1时,向量C=B;

 当t从0增加到1时,向量C会从起始点A绕着A×B(即向量A和B的叉乘)的方向匀速移动到向量B,此处的匀速是指角度旋转的匀速,即向量C与B的夹角k=e*(1t),如图14-15所示,这样便可确定向量C的方向。而向量C的模长计算公式则为:

;

这样便可以确定向量C了。

 当向量A和B中某个分量的值都为0时,比如它们的y轴分量都为0,即ay=by=0时,则A将绕着y轴在xz平面匀速旋转向B移动,并且在移动过程中C.y的值始终为0。

图14-15 Slerp球形插值

实例演示 下面通过实例演示方法Slerp的使用。

using UnityEngine;

using System.Collections;


public class Slerp_ts : MonoBehaviour {

public Transform from_T, to_T;

Vector3 from_v, to_v;

Vector3 slerps = Vector3.zero;

float speed = 0.1f;



void Start () {

    //初始化起始位置

    from_v = from_T.position;

    to_v = to_T.position;

}



void Update () {

    //在1/speed时间内slerps从from_v移动到to_v

    slerps = Vector3.Slerp(from_v,to_v,Time.time*speed);

    //绘制从原点到slerps的红线,并保留100秒以便观察

    //运行时只能在scene视图中查看

    Debug.DrawLine(Vector3.zero,slerps,Color.red,100.0f);

}

}

 在这段代码中,首先声明了3个Vector3变量from_v、to_v和slerps,并在Start方法中对其初始化,然后在方法Update中将方法Vector3.Slerp的返回值赋给slerps,最后绘制一条从世界坐标系原点到slerps的直线。请自行运行程序,查看slerps点的移动轨迹,运行时请在Scene视图而非Game视图中查看,

图14-16是一张运行时截图及注释。

原文地址:https://www.cnblogs.com/VR-1024/p/6140141.html