keras学习笔记(4)

1.gpu配置

import tensorflow as tf

#当前程序可用GPU
gpu=tf.config.experimental.list_physical_devices(device_type='GPU')
cpu=tf.config.experimental.list_physical_devices(device_type='CPU')

gpu

cpu

#设置可用gpu
tf.config.experimental.set_visible_devices(devices=gpu[0:2],device_type='GPU')

#当前程序只可见部分gpu的另一种方法
import os
os.environ['CUDA_VISIBLE_DEVICES']='2,3'

#设置gpu动态分配显存
gpus=tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
    tf.config.experimental.set_memory_growth(device=gpu,Tue)

#设置gpu只用部分显存
gpus=tf.config.experimental.list_physical_devices(device_type='GPU')
tf.config.experimental.set_virtual_device_configuration(gpus[0],[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)])

 2.#图像语义分割FCN

#1.全卷积网络FCN
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import os
import glob

os.listdir('./annotations/trimaps')[-5:]

img=tf.io.read_file('./annotations/trimaps/Abyssinian_1.png')

img=tf.image.decode_png(img)

img.shape

img=tf.squeeze(img)#将维度为1的维度压缩掉,缩小为度

img.shape

plt.imshow(img)

#看标签图像有几种像素
np.unique(img.numpy())

img=tf.io.read_file('./images/Abyssinian_1.jpg')

img=tf.image.decode_jpeg(img)

plt.imshow(img)

#开始整理数据
images=glob.glob('./images/*.jpg')

images_count=len(images)

images_count

anno=glob.glob('./annotations/trimaps/*.png')

len(anno)

np.random.seed(2019)
index=np.random.permutation(images_count)

images=np.array(images)[index]
anno=np.array(anno)[index]#因为使用了同样的索引,所以还是一一对应的

dataset=tf.data.Dataset.from_tensor_slices((images,anno))#里面是图像和标签的地址值,以元组形式传入

test_count=int(images_count*0.2)
train_count=images_count-test_count

test_count,train_count

data_train=dataset.skip(test_count)
data_test=dataset.take(test_count)

#图像预处理
def read_jpg(path):
    img=tf.io.read_file(path)
    img=tf.image.decode_jpeg(img,channels=3)
    return img
def read_png(path):
    img=tf.io.read_file(path)
    img=tf.image.decode_png(img,channels=1)
    return img

def normal_img(input_image,input_anno):
    input_image=tf.cast(input_image,tf.float32)/127.5-1
    input_anno=input_anno-1#1,2,3>>>0,1,2
    return input_image,input_anno

def load_images(input_image_path,input_anno_path):
    input_image=read_jpg(input_image_path)
    input_anno=read_png(input_anno_path)
    input_image=tf.image.resize(input_image,(224,224))
    input_anno=tf.image.resize(input_anno,(224,224))
    return normal_img(input_image,input_anno)

data_train=data_train.map(load_images,num_parallel_calls=tf.data.experimental.AUTOTUNE)
data_test=data_test.map(load_images,num_parallel_calls=tf.data.experimental.AUTOTUNE)

BATCH_SIZE=8

data_train=data_train.repeat().shuffle(100).batch(BATCH_SIZE)
data_test=data_test.batch(BATCH_SIZE)

data_train

for img,anno in data_train.take(1):
    plt.subplot(1,2,1)
    plt.imshow(tf.keras.preprocessing.image.array_to_img(img[0]))
    plt.subplot(1,2,2)
    plt.imshow(tf.keras.preprocessing.image.array_to_img(anno[0]))

#使用预训练网络
conv_base=tf.keras.applications.VGG16(weights='imagenet',input_shape=(224,224,3),include_top=False)

conv_base.summary()

conv_base.layers

#使用name获取某一层
conv_base.get_layer('block5_conv3')

conv_base.get_layer('block5_conv3').output

submodel=tf.keras.models.Model(inputs=conv_base.input,outputs=conv_base.get_layer('block5_conv3').output)#去掉随后一层的池化

submodel.summary()

layer_names=['block5_conv3','block4_conv3','block3_conv3','block5_pool']

#多输出层的引出
layers_output=[conv_base.get_layer(layer_name).output for layer_name in layer_names]

multi_out_model=tf.keras.models.Model(inputs=conv_base.input,outputs=layers_output)

multi_out_model.trainable=False

multi_out_model.summary()

inputs=tf.keras.layers.Input(shape=(224,224,3))
out_block5_conv3,out_block4_conv3,out_block3_conv3,out=multi_out_model(inputs)


out.shape,out_block5_conv3.shape,out_block4_conv3.shape,out_block3_conv3.shape

#上采样(反卷积)
x1=tf.keras.layers.Conv2DTranspose(512,3,strides=2,padding='same',activation='relu')(out)


x1.shape

x1=tf.keras.layers.Conv2D(512,3,padding='same',activation='relu')(x1)

x1.shape

x2=tf.add(x1,out_block5_conv3)

x2.shape

x2=tf.keras.layers.Conv2DTranspose(512,3,strides=2,padding='same',activation='relu')(x2)
x2=tf.keras.layers.Conv2D(512,3,padding='same',activation='relu')(x2)
x3=tf.add(x2,out_block4_conv3)

x3.shape

x3=tf.keras.layers.Conv2DTranspose(256,3,strides=2,padding='same',activation='relu')(x3)
x3=tf.keras.layers.Conv2D(256,3,padding='same',activation='relu')(x3)
x4=tf.add(x3,out_block3_conv3)

x4.shape

#上采样
x5=tf.keras.layers.Conv2DTranspose(128,3,strides=2,padding='same',activation='relu')(x4)
x5=tf.keras.layers.Conv2D(128,3,padding='same',activation='relu')(x5)
prediction=tf.keras.layers.Conv2DTranspose(3,3,strides=2,padding='same',activation='softmax')(x5)

prediction.shape

model=tf.keras.models.Model(inputs=inputs,outputs=prediction)

model.summary()

#模型配置
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['acc'])

#模型训练
history=model.fit(data_train,epochs=3,steps_per_epoch=train_count//BATCH_SIZE,validation_data=data_test,validation_steps=test_count//BATCH_SIZE)

num=3
for image,mask in data_test.take(1):#取一个batch
    pred_mask=model.predict(image)
    pred_mask=tf.argmax(pred_mask,axis=-1)
    pred_mask=pred_mask[...,tf.newaxis]
    plt.figure(figsize=(10,10))
    for i in range(num):
        plt.subplot(num,3,i*num+1)
        plt.imshow(tf.keras.preprocessing.image.array_to_img(image[i]))
        plt.subplot(num,3,i*num+2)
        plt.imshow(tf.keras.preprocessing.image.array_to_img(mask[i]))
        plt.subplot(num,3,i*num+3)
        plt.imshow(tf.keras.preprocessing.image.array_to_img(pred_mask[i]))

 3.RNN预测航空公司评论

#航空公司评论
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
import pandas as pd

data=pd.read_csv('Tweets.csv')

data.head()

data=data[['airline_sentiment','text']]#取出这两列

data.head()

data.airline_sentiment.unique()

data.airline_sentiment.value_counts()

data_p=data[data.airline_sentiment=='positive']

data_n=data[data.airline_sentiment=='negative']

data_n=data_n.iloc[:len(data_p)]#使得正负样本数量一样多

data=pd.concat([data_n,data_p])#将两种数据垂直方向堆叠

data

#乱序
data.sample(len(data))

#数据预处理:标签数字化
data['review']=(data.airline_sentiment=='positive').astype(int)#标签数字化,并增加为新的一列review


del data['airline_sentiment']#数字化后删除文字列

data

#单词向量化tf.keras.layers.Embedding


#处理文本
#单词向量化tf.keras.layers.Embedding
import re 
token=re.compile('[A-Za-z]+|[!?,.()]')#利用正则匹配出大小写字母和标点符号


def reg_text(text):
    new_text=token.findall(text)
    new_text=[word.lower() for word in new_text]#单词全部小写化
    return new_text

data['text']=data.text.apply(reg_text)

word_set=set()#集合,遍历所有文本,提取每个单词
for text in data.text:
    for word in text:
        word_set.add(word)

max_word=1+len(word_set)#总共这么多单词

word_list=list(word_set)#集合传换成列表,列表下表对应每个单词索引

word_index=dict((word,word_list.index(word)+1) for word in word_list)#遍历,将单词索引和单词转换成字典格式,索引从1开始,因为等会填充用0

word_index

#每一个文本列表转换成数字向量
data_ok=data.text.apply(lambda x:[word_index.get(word,0) for word in x])

maxlen=max(len(x) for x in data_ok)#最长评论

#填充
data_ok=keras.preprocessing.sequence.pad_sequences(data_ok.values,maxlen)#

data_ok.shape#(4726, 40)

#搭建模型
model=keras.Sequential()
#embeding:把文本映射为密集向量
model.add(layers.Embedding(max_word,50,input_length=maxlen))#1输入的word个数,要映射的密集向量的长度,每个语句的单词长度

model.add(layers.LSTM(64))#隐藏单元个数64

model.add(layers.Dense(1,activation='sigmoid'))

model.summary()

model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['acc'])

model.fit(data_ok,data.review.values,epochs=5,batch_size=128,validation_split=0.2)#用0.2数据做验证集

 4.RNN北京空气污染序列预测

from tensorflow import keras
from tensorflow.keras import layers
import pandas as pd 
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

data=pd.read_csv('./PRSA_data_2010.1.1-2014.12.31.csv')

data.head()

data.info()#数据信息

data.tail()#数据后5条

#因为是序列数据,所以剔除non值会出现断裂,所以填充值
data.columns

data['pm2.5'].isna().sum()#是否non值,返回布尔

data=data.iloc[24:].fillna(method='ffill')#前面24个连续non数据可以剔除,后面的用前向填充

data['pm2.5'].isna().sum()

data.head()

#提取出时间值,去掉多余列
import datetime
data['tm']=data.apply(lambda x: datetime.datetime(year=x['year'],month=x['month'],day=x['day'],hour=x['hour']),axis=1)#按行计算
data.drop(columns=['year','month','day','hour','No'],inplace=True)

data=data.set_index('tm')#将时间列设置为索引

#cbwd风向,化成数字形式》独热编码
data.cbwd.unique()

data=data.join(pd.get_dummies(data.cbwd))
del data['cbwd']

data

seq_length=5*24#以之前多久的数据作为记忆值来进行预测,这里是前5天的值
delay=24#要预测之后多久的值#预测24小时之后的值,延迟值

data_=[]
for i in range(len(data)-seq_length-delay):#依次取出一段数据,最后的不够训练与预测,就不取
    data_.append(data.iloc[i:i+seq_length+delay])

data_[0].shape#(144, 11)

data_=np.array([df.values for df in data_])

data_.shape

#将拿到的一段一段的数据作乱序处理
np.random.shuffle(data_)

x=data_[:,:5*24,:]

y=data_[:,-1,0]#预测这段数据的最后一个数据的第一个属性(PM2.5)

x.shape

y.shape

#划分训练集与测试集数据
split_b=int(data_.shape[0]*0.8)

train_x=x[:split_b]
train_y=y[:split_b]
test_x=x[split_b:]
test_y=y[split_b:]

train_x.shape,train_y.shape,test_x.shape,test_y.shape#((34924, 120, 11), (34924,), (8732, 120, 11), (8732,))

#数据标准化
mean=train_x.mean(axis=0)#对列求均值
std=train_x.std(axis=0)
train_x=(train_x-mean)/std
test_x=(test_x-mean)/std

#建立模型
batch_size=128
model=keras.Sequential()
model.add(layers.Flatten(input_shape=(train_x.shape[1:])))#做flatten会破坏序列性,此模型不适合做序列预测
model.add(layers.Dense(32,activation='relu'))
model.add(layers.Dense(1))

model.compile(optimizer='adam',loss='mse',metrics=['mae'])

history=model.fit(train_x,train_y,batch_size=batch_size,epochs=10,validation_data=(test_x,test_y))

history.history.keys()

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(history.epoch,history.history['val_mae'],c='r')
plt.plot(history.epoch,history.history['mae'],c='b')

#使用LSTM网络做序列预测
model=keras.Sequential()
#return_sequence=True时,LSTM网络可以堆叠,这是把120次每次的输出都再输入到下一个网络,否则,输出只有最后一次的值的输出
model.add(layers.LSTM(32,input_shape=(120,11),return_sequence=True))#1batch大小即隐藏单元数,2序列大小,3每个序列的特征值个数,默认激活‘tanh'
model.add(layers.LSTM(32,return_sequence=True))
model.add(layers.LSTM(32))#最后一层LSTM只要最后的输出

model.add(layers.Dense(1))

#利用回调函数,在训练中降低学习率
lr_reduce=keras.callbacks.ReduceLROnPlateau('val_loss',patience=3,factor=0.5,min_lr=0.000001)#'val_loss'三次不降低,则学习率*0.5,最小只能降低到min_lr

model.compile(optimizer='adam',loss='mse',metrics=['mae'])
history=model.fit(train_x,train_y,batch_size=batch_size,epochs=10,callbacks=[lr_reduce],validation_data=(test_x,test_y))

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(history.epoch,history.history['val_mae'],c='r')
plt.plot(history.epoch,history.history['mae'],c='b')

#使用模型预测与评价
model.evaluate(test_x,test_y,verbose=0)

pre_test=model.predict(test_x)

test_x.shape,pre_test.shape

pre_test[:5]#前5条预测结果

#预测最后一次数据,单数据预测
data_test=data[-120:]

data_test.shape#(120, 11),要扩展维度,前面有个batch

data_test=np.expand_dims(data_test,0)

data_test.shape#(1, 120, 11)

model.predict(data_test)

  

原文地址:https://www.cnblogs.com/Turing-dz/p/13193932.html