论文阅读笔记---HetConv

1 写在前边的话

HetConv性能:当使用HetConv取代标准卷积之后,FLOPs大概是之前的1/8到1/3,更重要的是精度几乎不变!!!

论文地址:https://arxiv.org/abs/1903.04120

2 HetConv的结构

实质:是分组卷积与逐点卷积结合的产物。具体如下:

对于卷积(标准卷积;深度卷积;分组卷积;逐点卷积)来讲,每一个filter的尺寸是完全一样的,文章中也称之为同构卷积。

所谓异构卷积,也就是说,对于同一个filter来讲,它的尺寸是不一样的,文章中是有两种。

这样讲可能有点抽象,举个例子来体会一下:

假设原有的一个fliter为:3x3xM,HetConv将M中M/P的3x3卷积核尺寸保留,剩余的M-M/P卷积核尺寸变为1x1的,其中P是一个比例系数。

上边讲的只是一个filter,现假设输出的通道数为N,HetConv是这样做的,假设第一个通道第一个3x3为在第一个位置开始,那么第二个通道中第一个3x3在第二个位置开始,以此类推,如下图所示:

3 计算量比较

假设输入特征图为:(D_{i} imes D_{i} imes M),输出的特征图为:(D_{o} imes D_{o} imes N),标准的卷积核为:(K imes K imes M)

对于标准卷积来讲:

计算量为:(D_{o} imes D_{o} imes M imes N imes K imes K)

对于异构卷积来讲:

计算量为(left(D_{o} imes D_{o} imes M imes N imes K imes K ight) / P) + (left(D_{o} imes D_{o} imes N ight) imesleft(M-frac{M}{P} ight))

异构卷积的计算量/标准卷积的计算量=(=frac{1}{P}+frac{(1-1 / P)}{K^{2}})

通过上式中,我们发现,当P=1时,异构卷积就是标准卷积!

对于深度可分离卷积来讲:

计算量为(D_{o} imes D_{o} imes M imes K imes K+M imes N imes D_{o} imes D_{o})

深度可分离卷积的计算量/标准卷积的计算量=(=frac{1}{N}+frac{1}{K^{2}})

论文中给出一个极端的case,当P=M时此时效果也比深度可分离卷积好,同时计算量也少,如下所示:

(frac{1}{M}+frac{(1-1 / M)}{K^{2}}<frac{1}{M}+frac{1}{K^{2}})

对于分组卷积+逐点卷积来讲:

计算量为(left(D_{o} imes D_{o} imes M imes N imes K imes K ight) / G+M imes N imes D_{o} imes D_{o})

分组卷积+逐点卷积的计算量/标准卷积的计算量=(frac{1}{G}+frac{1}{K^{2}})

当P=G时,有:

(frac{1}{P}+frac{(1-1 / P)}{K^{2}}<frac{1}{P}+frac{1}{K^{2}})

综上所述:

异构卷积比深度可分离卷积,分组卷积计算量都少,并且识别精度还高!

4 代码实现

pytorch实现:https://github.com/sxpro/HetConvolution2d_pytorch

原文地址:https://www.cnblogs.com/Terrypython/p/11469517.html