Codeforces Round #538 (Div. 2)


Codeforces 1114

比赛链接

貌似最近平均难度最低的一场div2了...
但我没有把握住机会TAT
D题没往DP想 写模拟自闭了40多分钟...才想起是个...最简单的区间DP
再多二十分钟就能调出F的傻逼错误了...

A.Got Any Grapes?

puts的返回值原来是0。。刚开始写的return !puts("NO");在样例上RE了一次= =

#include <set>
#include <map>
#include <cstdio>
#include <cctype>
#include <vector>
#include <cstring>
#include <algorithm>
#define pc putchar
#define gc() getchar()
typedef long long LL;


inline int read()
{
	int now=0,f=1;register char c=gc();
	for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
	for(;isdigit(c);now=now*10+c-48,c=gc());
	return now*f;
}

int main()
{
	int x=read(),y=read(),z=read(),a=read(),b=read(),c=read();
	if(a<x) return puts("NO"),0;
	a-=x;
	if(a+b<y) return puts("NO"),0;
	int tot=a+b+c-y-z;
	if(tot<0) return puts("NO"),0;
	return puts("YES"),0;

	return 0;
}

B.Yet Another Array Partitioning Task

因为可以每隔(m)个分一段,所以选出最大的(m*k)个数,每隔(m)个分一段就行了。

#include <set>
#include <map>
#include <cstdio>
#include <cctype>
#include <vector>
#include <cstring>
#include <algorithm>
#define pc putchar
#define gc() getchar()
typedef long long LL;
const int N=2e5+5;

struct Node
{
	int v,p;
	bool operator <(const Node &x)const
	{
		return v>x.v;
	}
}A[N];

inline int read()
{
	int now=0,f=1;register char c=gc();
	for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
	for(;isdigit(c);now=now*10+c-48,c=gc());
	return now*f;
}

int main()
{
	static int Ans[N];
	static bool vis[N];
	int n=read(),m=read(),K=read();
	for(int i=1; i<=n; ++i) A[i]=(Node){read(),i};
	std::sort(A+1,A+1+n);
	LL sum=0;
	for(int i=1; i<=K*m; ++i) vis[A[i].p]=1, sum+=A[i].v;
	int cnt=0;
	for(int i=1,t=0; i<=n; ++i)
		if(vis[i] && ++t==m)
			t=0, Ans[++cnt]=i;
	printf("%I64d
",sum);
	for(int i=1; i<cnt; ++i) printf("%d ",Ans[i]);

	return 0;
}

C.Trailing Loves (or L'oeufs?)

(Description)
给定(n,b),求(b)进制下(n!)的末尾零的个数。
(nleq10^{18}, bleq10^{12})

(Solution)
经典问题。。所以也是一道能搜到的题。。
如果(d=10),就是求(n!)有多少个(2)(5)的因子(c_2,c_5),答案是(min{c_2,c_5}),不难理解。
如果(d eq10),同样对(d)质因数分解,令(d=prod_{i=1}^kp_i^{a_i}, a_i eq0),依次求出(n!)中有多少个(p_i),记为(c_i),答案就是(min_{i=1}^k{c_i})
(n!)中质因子(p)的个数的公式:$$f(n)=leftlfloorfrac{n}{p} ight floor +leftlfloorfrac{n}{p^2} ight floor +leftlfloorfrac{n}{p^3} ight floor +cdots$$

实际写的时候(n)每次除以(p)即可,不需要分母不断乘(p),会爆long long。。。

#include <set>
#include <map>
#include <cstdio>
#include <cctype>
#include <vector>
#include <cstring>
#include <algorithm>
#define pc putchar
#define gc() getchar()
typedef long long LL;
const int N=1e6+5;

inline LL read()
{
	LL now=0;register char c=gc();
	for(;!isdigit(c);c=gc());
	for(;isdigit(c);now=now*10+c-48,c=gc());
	return now;
}
LL Calc(LL x,LL y)
{
	LL res=0;
	for(; x; x/=y) res+=x/y;
	return res;
}

int main()
{
	static LL P[N];
	static int tm[N];
	LL n=read(),b=read();
//1
	LL ans=1ll<<60;
	for(int i=2; 1ll*i*i<=b; ++i)
		if(!(b%i))
		{
			LL cnt=1; b/=i;
			while(!(b%i)) b/=i, ++cnt;
			ans=std::min(ans,Calc(n,i)/cnt);
		}
	if(b!=1) ans=std::min(ans,Calc(n,b));
	printf("%I64d
",ans);
	return 0;
//2
	int t=0;
	for(int i=2; 1ll*i*i<=b; ++i)
		if(!(b%i))
		{
			P[++t]=i, b/=i, tm[t]=1;
			while(!(b%i)) b/=i, ++tm[t];
		}
	if(b!=1) P[++t]=b, tm[t]=1;
	ans=1ll<<60;
	for(int i=1; i<=t; ++i)
	{
		LL cnt=0;
//		for(LL x=P[i]; x<=n&&x>0; x*=P[i]) cnt+=n/x;//这么写可能直接爆longlong爆成正数啊。。。= =
		for(LL x=n; x; x/=P[i]) cnt+=x/P[i];
		ans=std::min(ans,cnt/tm[i]);
	}
	printf("%I64d
",ans);

	return 0;
}

D.Flood Fill(区间DP)

刚开始一看(O(n^2)),就想枚举起点然后模拟。。(mdzz)

无脑区间DP。。
(f[i][j][0/1])表示合并完(isim j)区间,现在颜色是(c_i/c_j)的最小花费。转移特判一下即可。
或者先去掉相邻的重复元素,直接(f[i][j])表示合并完(isim j)区间的最小花费。如果(c_i=c_j)(f[i][j]=f[i+1][j-1]+1);否则(f[i][j]=min(f[i+1][j], f[i][j-1])+1)

#include <set>
#include <map>
#include <cstdio>
#include <cctype>
#include <vector>
#include <cstring>
#include <algorithm>
#define pc putchar
#define gc() getchar()
typedef long long LL;
const int N=5005;

int A[N],f[N][N][2];

inline int read()
{
	int now=0,f=1;register char c=gc();
	for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
	for(;isdigit(c);now=now*10+c-48,c=gc());
	return now*f;
}
bool Check(int n)
{
	for(int i=1; i<=n; ++i) if(A[i]!=A[1]) return 0;
	puts("0");
	return 1;
}

int main()
{
	int n=read();
	for(int i=1; i<=n; ++i) A[i]=read();
	if(Check(n)) return 0;
	memset(f,0x3f,sizeof f);
	for(int i=1; i<=n; ++i) f[i][i][0]=f[i][i][1]=0;
	for(int l=1; l<n; ++l)
		for(int i=1; i+l<=n; ++i)
		{
			int j=i+l;
			f[i][j][0]=std::min(f[i][j-1][0]+2-2*(A[i]==A[j]),std::min(f[i][j-1][1]+2-(A[j-1]==A[j])-(A[i]==A[j]),std::min(f[i+1][j][0]+1-(A[i]==A[i+1]),f[i+1][j][1]+1-(A[j]==A[i]))));
			f[i][j][1]=std::min(f[i][j-1][0]+1-(A[i]==A[j]),std::min(f[i][j-1][1]+1-(A[j-1]==A[j]),std::min(f[i+1][j][0]+2-(A[i]==A[i+1])-(A[i]==A[j]),f[i+1][j][1]+2-2*(A[j]==A[i]))));
		}
	printf("%d
",std::min(f[1][n][0],f[1][n][1]));

	return 0;
}

E.Arithmetic Progression(交互 二分 随机化)

首先通过操作二可以二分出最大值。
然后剩下(30)次操作一能干什么呢。。只能帮我们确定出数列中有某些数,那能做的好像就是随机确定(30)个数。
等差数列中任意两个数作差可以得到(xcdot d),把确定出的数两两作差然后对差求(gcd),是有可能得到真正的(d)的。
正确概率是多少呢,感觉挺高的。。然后有最大值有公差,就做完了。
官方题解中对正确概率有证明,大约是(1.86185 imes10^{-9})

做差的时候先排序,只求出相邻两个数的差就够了,并不需要所有数两两之间作差。

#include <ctime>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define Flush() fflush(stdout)
typedef long long LL;
const int N=1e6+5;

int id[N];

inline int read()
{
	int now=0;register char c=gc();
	for(;!isdigit(c);c=gc());
	for(;isdigit(c);now=now*10+c-48,c=gc());
	return now;
}
inline int Rd()
{
	return rand()<<15|rand();
}
inline int Query1(int n)
{
	int p=Rd()%n+1;
	printf("? %d
",id[p]), Flush();
	std::swap(id[p],id[n]);//不这么写也行 差别不大 无所谓啦 
	return read();
}
inline int Query2(int x)
{
	printf("> %d
",x), Flush();
	return read();
}

int main()
{
	static int A[66];
	srand(time(0));
	int n=read();
	int l=0,r=1e9,mid,mx=0,rest=60;
	while(l<=r)
		if(--rest,Query2(mid=l+r>>1)) mx=l=mid+1;
		else r=mid-1;

	for(int i=1; i<=n; ++i) id[i]=i;
	int t=0; rest=std::min(rest,n);
	for(int now=n; rest; --rest) A[++t]=Query1(now--);

	std::sort(A+1,A+1+t), A[++t]=mx;
	int d=A[2]-A[1];
	for(int i=3; i<=t; ++i) if(A[i]!=A[i-1]) d=std::__gcd(d,A[i]-A[i-1]);
	printf("! %d %d
",mx-(n-1)*d,d), Flush();

	return 0;
}

F.Please, another Queries on Array?(线段树 欧拉函数)

(Description)
给定长为(n)的序列(A_i),要求支持两种操作:

  1. (l,r,v),区间([l,r])乘一个数(v)
  2. (l,r),输出(varphi(prod_{i=l}^rA_i))
    (nleq4 imes10^5, qleq2 imes10^5, A_i,vleq300)

(Solution)
听旁边dalao讨论好像特别可做,扔掉E看F。
忘了欧拉函数怎么求。。去百度百科看了下,发现这不是线段树裸题吗。。
来自百度百科
(prod_{i=l}^rA_i=n=prod_{i=1}^kp_i^{a_i}),那(varphi(n)=prod_{i=1}^kp_i^{a_i}frac{p_i-1}{p_i}=nprod_{i=1}^kfrac{p_i-1}{p_i})
(k)(300)以内质数个数,就是(62)。所以我们维护一个区间乘积、区间某个质因子是否出现过就完了。
后者可以用bitset维护,或者因为只有(62)个用long long也行。
复杂度(O(q(log^2n+62)))(区间乘积竟然第一次写...要快速幂所以多个(log)。但是有方法可以去掉快速幂的复杂度,见这一题)。

//1809ms	42100KB
#include <cstdio>
#include <cctype>
#include <bitset>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define mod 1000000007
typedef long long LL;
const int N=4e5+5,M=301,LIM=62;
const int P[LIM]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293};
const int ref[M]={0,0,0,1,0,2,0,3,0,0,0,4,0,5,0,0,0,6,0,7,0,0,0,8,0,0,0,0,0,9,0,10,0,0,0,0,0,11,0,0,0,12,0,13,0,0,0,14,0,0,0,0,0,15,0,0,0,0,0,16,0,17,0,0,0,0,0,18,0,0,0,19,0,20,0,0,0,0,0,21,0,0,0,22,0,0,0,0,0,23,0,0,0,0,0,0,0,24,0,0,0,25,0,26,0,0,0,27,0,28,0,0,0,29,0,0,0,0,0,0,0,0,0,0,0,0,0,30,0,0,0,31,0,0,0,0,0,32,0,33,0,0,0,0,0,0,0,0,0,34,0,35,0,0,0,0,0,36,0,0,0,0,0,37,0,0,0,38,0,0,0,0,0,39,0,0,0,0,0,40,0,41,0,0,0,0,0,0,0,0,0,42,0,43,0,0,0,44,0,45,0,0,0,0,0,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,0,0,0,47,0,0,0,48,0,49,0,0,0,50,0,0,0,0,0,51,0,52,0,0,0,0,0,0,0,0,0,53,0,0,0,0,0,54,0,0,0,0,0,55,0,0,0,0,0,56,0,57,0,0,0,0,0,58,0,0,0,59,0,60,0,0,0,0,0,0,0,0,0,61};
//为什么const之后慢了不少= = 

inline int read();
struct Segment_Tree
{
	#define ls rt<<1
	#define rs rt<<1|1
	#define lson l,m,ls
	#define rson m+1,r,rs
	#define S N<<2
	int val[S],tag[S];
	LL now,Ans,f[S],tagf[S];
	#undef S
	#define Upd(rt,v,l,vf) val[rt]=1ll*val[rt]*FP(v,l)%mod, tag[rt]=1ll*tag[rt]*v%mod, f[rt]|=vf, tagf[rt]|=vf
	#define Update(rt) f[rt]=f[ls]|f[rs], val[rt]=1ll*val[ls]*val[rs]%mod
	inline int FP(int x,int k)
	{
		int t=1;
		for(; k; k>>=1,x=1ll*x*x%mod)
			if(k&1) t=1ll*t*x%mod;
		return t;
	}
	void Build(int l,int r,int rt)
	{
		tag[rt]=1;
		if(l==r)
		{
			int v=read(); val[rt]=v;
			for(int i=0; i<LIM&&P[i]*P[i]<=v; ++i)
				if(!(v%P[i]))
				{
					f[rt]|=1ll<<i, v/=P[i];//1ll!!!
					while(!(v%P[i])) v/=P[i];
				}
			if(v!=1) f[rt]|=1ll<<ref[v];
			return;
		}
		int m=l+r>>1;
		Build(lson), Build(rson), Update(rt);
	}
	inline void PushDown(int rt,int m)
	{
		int l=ls,r=rs;
		Upd(l,tag[rt],m-(m>>1),tagf[rt]), Upd(r,tag[rt],m>>1,tagf[rt]), tag[rt]=1, tagf[rt]=0;
	}
	void Modify(int l,int r,int rt,int L,int R,int v)
	{
		if(L<=l && r<=R)
		{
			Upd(rt,v,r-l+1,now);
			return;
		}
		if(tag[rt]!=1) PushDown(rt,r-l+1);
		int m=l+r>>1;
		if(L<=m) Modify(lson,L,R,v);
		if(m<R) Modify(rson,L,R,v);
		Update(rt);
	}
	int Query(int l,int r,int rt,int L,int R)
	{
		if(L<=l && r<=R) return Ans|=f[rt],val[rt];
		if(tag[rt]!=1) PushDown(rt,r-l+1);
		int m=l+r>>1;
		if(L<=m)
			if(m<R) return 1ll*Query(lson,L,R)*Query(rson,L,R)%mod;
			else return Query(lson,L,R);
		return Query(rson,L,R);
	}
}T;

inline int read()
{
	int now=0;register char c=gc();
	for(;!isdigit(c);c=gc());
	for(;isdigit(c);now=now*10+c-48,c=gc());
	return now;
}
//void Init(int n)
//{
//	static int P[N];
//	static bool notP[M];
//	for(int i=2,cnt=0; i<=n; ++i)
//	{
//		if(!notP[i]) ref[i]=cnt, P[cnt++]=i;
//		for(int j=0; j<cnt && i*P[j]<=n; ++j)
//		{
//			notP[i*P[j]]=1;
//			if(!(i%P[j])) break;
//		}
//	}
//}
inline char GetOpt()
{
	register char c;
	while(!isalpha(c=gc()));
	return c;
}

int main()
{
	static int inv[N],coef[N];
//	Init(M-1);
	inv[1]=1;
	for(int i=2; i<M; ++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
	for(int i=0; i<LIM; ++i) coef[i]=1ll*(P[i]-1)*inv[P[i]]%mod;

	int n=read(),q=read();
	T.Build(1,n,1);
	while(q--)
	{
		if(GetOpt()=='T')
		{
			T.Ans=0;
			int l=read(),r=read(),val=T.Query(1,n,1,l,r);
			for(int i=0; i<LIM; ++i)
				if(T.Ans>>i&1) val=1ll*val*coef[i]%mod;
			printf("%d
",val);
		}
		else
		{
			int l=read(),r=read(),x=read(),v=x;
			LL now=0;
			for(int i=0; i<LIM&&P[i]*P[i]<=v; ++i)
				if(!(v%P[i]))
				{
					now|=1ll<<i, v/=P[i];
					while(!(v%P[i])) v/=P[i];
				}
			if(v!=1) now|=1ll<<ref[v];
			T.now=now, T.Modify(1,n,1,l,r,x);
		}
	}
	return 0;
}
原文地址:https://www.cnblogs.com/SovietPower/p/10361309.html