BZOJ.1071.[SCOI2007]组队(思路)

题目链接

三个限制:
(Ah-AminH+Bv-BminVleq C o Ah+Bvleq C+AminH+BminV)
(vgeq minV)
(hgeq minH)

(s=Ah+Bv)。将序列按(s)从小到大排序。

(n^2)枚举(minV,minH)。如果固定(minV),从小到大枚举(minH)时,满足(sleq C+AminH+BminV)的位置是单增的。统计答案时可以判一下是否满足(v_igeq minV)

但还有(h_igeq minH)的限制。因为(minH)是递增的,之前满足条件的后来可能不满足。用一个堆维护之前加入的最小的(h_i)即可,不满足条件就弹出。
但是(O(n^2log n))过不去。

问题在于怎么处理(h_igeq minH)。按(h)排序然后(<minH)的都减掉?显然会多减掉一些不满足另外两个条件而未被统计的。

再观察一下限制,把(h,v)分开:(A(h-minH)leq C+B(minV-v))
显然左式满足(geq0),那么也有(0leq C+B(minV-v) o minVleq vleq frac CB+minV)
好像就是(v)不能过大使得(h)过小?

(vleqfrac CB+minV)时,限制一就成了(A(h-minH)+(leq C的值)leq C)。若(hleq minH),显然满足这个(s)的限制。

如果在(s)满足条件且(minVleq vleq frac CB+minV)(ans)++,限制一二仍旧满足。
如果(h<minH)(minVleq vleq frac CB+minV),如上所说此时也满足(s)的限制,所以此时(ans)--减掉的就一定是之前统计过的了。所以就可以做到不重不漏了orz。

//976kb	2392ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=5005;

struct Node
{
	int h,v; LL s;
}a[N],b[N];

inline int read()
{
	int now=0;register char c=gc();
	for(;!isdigit(c);c=gc());
	for(;isdigit(c);now=now*10+c-'0',c=gc());
	return now;
}
inline bool cmps(const Node &a,const Node &b)
{
	return a.s<b.s;
}
inline bool cmph(const Node &a,const Node &b)
{
	return a.h<b.h;
}

int main()
{
	int n=read(),A=read(),B=read(),C=read();
	for(int i=1; i<=n; ++i) a[i].h=read(), a[i].v=read(), a[i].s=1ll*A*a[i].h+1ll*B*a[i].v, b[i]=a[i];
	std::sort(a+1,a+1+n,cmps);
	std::sort(b+1,b+1+n,cmph);
	int ans=0; a[n+1].s=1e18, b[n+1].h=0x7fffffff;
	for(int i=1,CdivB=C/B; i<=n; ++i)
	{//枚举minv 
		int mnv=a[i].v; LL mxv=CdivB+mnv,tmp=C+1ll*B*mnv;
		for(int j=1,l=1,r=1,cnt=0; j<=n; ++j)
		{//是从小到大枚举的minh啊→_→ 
			while(a[r].s<=tmp+1ll*A*b[j].h)
				cnt+=(a[r].v>=mnv && a[r].v<=mxv), ++r;
			while(b[l].h<b[j].h)
				cnt-=(b[l].v>=mnv && b[l].v<=mxv), ++l;
			ans=std::max(ans,cnt);
		}
	}
	printf("%d
",ans);

	return 0;
}
原文地址:https://www.cnblogs.com/SovietPower/p/10059017.html