多线程编程核心技术(十三)ReadWriteLock

一种非常普遍的并发场景:读多写少场景。实际工作中,为了优化性能,我们经常会使用缓存,例如缓存元数据、缓存基础数据等,这就是一种典型的读多写少应用场景。缓存之所以能提升性能,一个重要的条件就是缓存的数据一定是读多写少的,例如元数据和基础数据基本上不会发生变化(写少),但是使用它们的地方却很多(读多)。

不同的是:StampedLock 里的写锁和悲观读锁加锁成功之后,都会返回一个 stamp;然后解锁的时候,需要传入这个 stamp。

这个stamp的作用从源码中看是用来进行校验的,但如果是作为校验的标志位,本身线程的方法栈的地址就可以当票据了。这个我也想不明白,如果是锁升级的原因,那进行对象更新就行了。

public void unlockWrite(long stamp) {
        WNode h;
        if (state != stamp || (stamp & WBIT) == 0L)
            throw new IllegalMonitorStateException();
        state = (stamp += WBIT) == 0L ? ORIGIN : stamp;
        if ((h = whead) != null && h.status != 0)
            release(h);
    }

  

读写锁,并不是 Java 语言特有的,而是一个广为使用的通用技术,所有的读写锁都遵守以下三条基本原则:

1.允许多个线程同时读共享变量;

2.只允许一个线程写共享变量;

3.如果一个写线程正在执行写操作,此时禁止读线程读共享变量。

读写锁允许多个线程同时读共享变量,而互斥锁是不允许的,这是读写锁在读多写少场景下性能优于互斥锁的关键。但读写锁的写操作是互斥的,当一个线程在写共享变量的时候,是不允许其他线程执行写操作和读操作。

class Cache<K,V> {
  final Map<K, V> m =
    new HashMap<>();
  final ReadWriteLock rwl = 
    new ReentrantReadWriteLock();
  final Lock r = rwl.readLock();
  final Lock w = rwl.writeLock();
 
  V get(K key) {
    V v = null;
    //读缓存
    r.lock();         ①
    try {
      v = m.get(key); ②
    } finally{
      r.unlock();     ③
    }
    //缓存中存在,返回
    if(v != null) {   ④
      return v;
    }  
    //缓存中不存在,查询数据库
    w.lock();         ⑤
    try {
      //再次验证
      //其他线程可能已经查询过数据库
      v = m.get(key); ⑥
      if(v == null){  ⑦
        //查询数据库
        v=省略代码无数
        m.put(key, v);
      }
    } finally{
      w.unlock();
    }
    return v; 
  }
}

  获取写锁的前提是读锁和写锁均未被占用 获取读锁的前提是没有其他线程占用写锁。所以想更新缓存,需要再次调用写方法,如果直接在read方法内部对锁升级为write锁就会导致死锁。

但是write锁是可以进行降级为read锁的,因为写锁的特点是同时需要读锁和写锁。

class CachedData {
  Object data;
  volatile boolean cacheValid;
  final ReadWriteLock rwl =
    new ReentrantReadWriteLock();
  // 读锁  
  final Lock r = rwl.readLock();
  //写锁
  final Lock w = rwl.writeLock();
  
  void processCachedData() {
    // 获取读锁
    r.lock();
    if (!cacheValid) {
      // 释放读锁,因为不允许读锁的升级
      r.unlock();
      // 获取写锁
      w.lock();
      try {
        // 再次检查状态  
        if (!cacheValid) {
          data = ...
          cacheValid = true;
        }
        // 释放写锁前,降级为读锁
        // 降级是可以的
        r.lock(); ①
      } finally {
        // 释放写锁
        w.unlock(); 
      }
    }
    // 此处仍然持有读锁
    try {use(data);} 
    finally {r.unlock();}
  }
}

读写锁类似于 ReentrantLock,也支持公平模式和非公平模式。读锁和写锁都实现了 java.util.concurrent.locks.Lock 接口,所以除了支持 lock() 方法外,tryLock()、lockInterruptibly() 等方法也都是支持的。但是有一点需要注意,那就是只有写锁支持条件变量,读锁是不支持条件变量的,读锁调用 newCondition() 会抛出 UnsupportedOperationException 异常。

另外这里的读写锁,性能还有可以提升的地方,因为可能很多业务都会使用这个缓存懒加载,实际生产环境,写缓存操作可能会比较多,那么不同的缓存key,实际上是没有并发冲突的,所以这里的读写锁可以按key前缀拆分,即使是同一个key,也可以类似ConcurrentHash 一样分段来减少并发冲突

原文地址:https://www.cnblogs.com/SmartCat994/p/14210339.html