qbxt20210503模拟赛

写在前面

良心出题人zhx!!!!
暴力分很满,甚至能到200pts+

预估成绩:(100+100+100+70 = 370pts)
最终成绩:(100+100+60+70 = 330pts)
排名:(3/83)

  • 排名第三竟只是一个二等?
  • 感觉发的耳机贼像机房的耳机,顿时没有鼠标香了/kk
  • gryz人均获奖/cy
  • 被rk1的jijidawang单调队列了/kk (就评论三楼那位/qq
  • 想要rk1的键盘/kel

T1

高精度取模

把字符串倒过来读,边读边取模即可

/*
Work by: Suzt_ilymics
Knowledge: ??
Time: O(??)
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
#define LL long long
#define orz cout<<"lkp AK IOI!"<<endl

using namespace std;
const int MAXN = 1e6+5;
const int INF = 1e9+7;
const int mod = 1e9+7;

int x = 0, y;
int a[MAXN];
char s[MAXN];

int read(){
	int s = 0, f = 0;
	char ch = getchar();
	while(!isdigit(ch))  f |= (ch == '-'), ch = getchar();
	while(isdigit(ch)) s = (s << 1) + (s << 3) + ch - '0' , ch = getchar();
	return f ? -s : s;
}

signed main()
{
    cin >> (s + 1), y = read();
    int len = strlen(s + 1);
    for(int i = 1; i <= len; ++i) a[i] = s[len - i + 1] - '0';
    if(len == 0) {
        for(int i = len; i >= 1; --i) x = x * 10 + a[i];
        printf("%lld
", x % y);
    } else {
        for(int i = len; i >= 1; --i) {
            x = x * 10 + a[i];
            x %= y;
        }
        printf("%lld
", x);
    }
	return 0;
}


T2

Description

数据范围:(n,m le 10^9)

Solution

考虑没有颜色的情况:
(f_i) 表示填到第 (i) 列的方案数:
只有两种方块,所以 (f_i) 只能从 (f_{i-1})(f_{i-2}) 转移过来,考虑转移方案,有转移方程

[f_{i} = f_{i - 1} + 2 imes f_{i-2} ]

只有 (20pts),考虑涂上颜色。

因为每种颜色可以随便涂,所以一个方块的方案数为 (m),发现两次转移都会增加三个块,所以方案数要乘以 (m^3),转移方程改为:

[f_{i} = f_{i-1} imes m^3 + 2 imes f_{i-2} imes m^3 ]

现在有 (70pts) 了。

发现这个式子很像斐波那契的递推式啊,考虑矩阵加速。列出相关式子,求出转移矩阵

[[f_{i-1}, f_{i-2}] imes Base = [f_{i}, f_{i-1}] ]

其中 (Base)

[egin{bmatrix} m^3 & 1 \ 2 imes m^3 & 0 end{bmatrix} ]

矩阵快速幂转移就好了

/*
Work by: Suzt_ilymics
Knowledge: ??
Time: O(??)

f[i] = f[i - 2] * 2 + f[i - 1] // f[i] 表示 到第 i 列 的方案数(不计颜色) 

f[i] = f[i - 2] * 2 * m^3 + f[i - 1] * m^3; // 计颜色,两种转移路径都会增加三个方块,每个方块有m种选择方案 

1 1
2 0

*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
#define LL long long
#define orz cout<<"lkp AK IOI!"<<endl

using namespace std;
const int MAXN = 1e6+5;
const int INF = 1e9+7;
const int mod = 1e9+7;

struct Matrix {
    int a[3][3];
    Matrix () { memset(a, 0, sizeof a); }
    Matrix operator * (const Matrix &b) {
        Matrix res;
        for(int i = 1; i <= 2; ++i) {
            for(int k = 1; k <= 2; ++k) {
                for(int j = 1; j <= 2; ++j) {
                    res.a[i][j] = (res.a[i][j] + a[i][k] * b.a[k][j]) % mod;
                }
            }
        }
        return res;
    }
}ans, base;

int n, m, k;
//int f[MAXN];

int read(){
	int s = 0, f = 0;
	char ch = getchar();
	while(!isdigit(ch))  f |= (ch == '-'), ch = getchar();
	while(isdigit(ch)) s = (s << 1) + (s << 3) + ch - '0' , ch = getchar();
	return f ? -s : s;
}

//void work1() {
//    f[1] = 1, f[2] = 3;
//    for(int i = 3; i <= n; ++i) f[i] = (2 * f[i - 2] + f[i - 1]) % mod;
//    printf("%lld
", f[n]);
//}

int Quick_Pow(int x, int p, int mod) {
    int res = 1;
    while(p) {
        if(p & 1) res = res * x % mod;
        x = x * x % mod;
        p >>= 1;
    }
    return res;
}

Matrix Pow(Matrix x, int p) {
    Matrix res;
    for(int i = 1; i <= 2; ++i) res.a[i][i] = 1;
    while(p) {
        if(p & 1) res = res * x;
        x = x * x;
        p >>= 1;
    }
    return res;
}

signed main()
{
    n = read(), m = read();
//    if(m == 1) work1();
//    else if(n <= 1000000){
//        f[1] = Quick_Pow(m, 3, mod);
//        f[2] = Quick_Pow(m, 3, mod) * 2 + Quick_Pow(m, 6, mod);
//        for(int i = 3; i <= n; ++i) {
//            f[i] = (f[i - 2] * 2 % mod + f[i - 1]) % mod * f[1] % mod;
//        }
//        printf("%lld
", f[n]);
//    } else {
        ans.a[1][1] = (Quick_Pow(m, 3, mod) * 2 + Quick_Pow(m, 6, mod)) % mod;
        ans.a[1][2] = Quick_Pow(m, 3, mod);
        if(n == 1) {
            printf("%lld", ans.a[1][2]);
            return 0;
        }
        if(n == 2) {
            printf("%lld", ans.a[1][1]);
            return 0;
        }
        base.a[1][1] = 1 * Quick_Pow(m, 3, mod) % mod, base.a[1][2] = 1;
        base.a[2][1] = 2 * Quick_Pow(m, 3, mod) % mod, base.a[2][2] = 0;
        Matrix Base = Pow(base, n - 2);
        ans = ans * Base;
        printf("%lld", ans.a[1][1] % mod);
//    }
	return 0;
}

/*

100 100
674167999


520955619
*/

T3

Description

Solution

(C_n^m) 在指数上啊

发现后面的模数是质数,所以可以用欧拉定理取模

但是 (1000003470) 是个合数,没法求逆元,所以我只写了 (n,m le 10^3) 的递推部分/kk

发现 (1000003470) 可以分解为 (2 imes 3 imes 5 imes 53 imes 677 imes 929)

所以对于每个质数求一边,然后用中国剩余定理合并即可(或者用扩展卢卡斯)

嗯,我写挂了

/*
Work by: Suzt_ilymics
Knowledge: ??
Time: O(??)
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
#define LL long long
#define orz cout<<"lkp AK IOI!"<<endl

using namespace std;
const int MAXN = 1e5+5;
const int INF = 1e9+7;
const int mod = 1000003471; // 这个数是质数 
const int phi = 1000003470; // mod 对应的欧拉函数 
int tmp[6] = {2, 3, 5, 53, 677, 929};

int x, n, m;
int b[10];
int a[7][1010][1010];

int read(){
	int s = 0, f = 0;
	char ch = getchar();
	while(!isdigit(ch))  f |= (ch == '-'), ch = getchar();
	while(isdigit(ch)) s = (s << 1) + (s << 3) + ch - '0' , ch = getchar();
	return f ? -s : s;
}

int Gcd(int a, int b) { return !b ? a : Gcd(b, a % b); }
int Lcm(int a, int b) { return a / Gcd(a, b) * b; }

void Merge(int &a1, int &m1, int a2, int m2) {
    if(m1 < m2) swap(m1, m2), swap(a1, a2);
    while(a1 % m2 != a2) a1 += m1;
    m1 = Lcm(m1, m2);
}

int Quick_Pow(int x, int p, int mod) {
    int res = 1;
    while(p) {
        if(p & 1) res = res * x % mod;
        x = x * x % mod;
        p >>= 1;
    }
    return res;
} 

int C(int n, int m, int p) {
    if(n < m) return 0;
    return a[p][n][m];
}

int Lucas(int n, int m, int p) { 
    if(!m) return 1;
    if(m > n) return 0;
    return Lucas(n / tmp[p], m / tmp[p], p) * C(n % tmp[p], m % tmp[p], p) % tmp[p]; 
}

void Init() {
    for(int i = 0; i < 6; ++i) {
        a[i][0][0] = 1;
        for(int j = 1; j <= tmp[i]; ++j) {
            for(int k = 0; k <= j; ++k) {
                a[i][j][k] = a[i][j - 1][k - 1] + a[i][j - 1][k];
                if(a[i][j][k] >= tmp[i]) a[i][j][k] -= tmp[i];
            }
        }
    }
}

signed main()
{
    Init();
    x = read(), n = read(), m = read();
    for(int i = 0; i < 6; ++i) b[i] = Lucas(n, m, i);
    int v1 = 0, n1 = 1;
    for(int i = 0; i < 6; ++i) Merge(v1, n1, b[i], tmp[i]);
    printf("%lld", Quick_Pow(x, v1, mod));
	return 0;
}

T4

Description

Solution

前三十分暴力判断;

(N = 1) 时输出两遍 (a_1) 即可;

发现 (x) 时不变的,所以存在一个合理的 (x) 是所有 (a_i) 的最小公倍数,又因为保证 (y le 10^3) 然后枚举就变成 (O(n^2)) 的了,可以通过 (70pts)

正解不会了/kk

正解:发现对于每个 (y) 可以写成同余方程的形式,然后解这个同余方程组即可

  • (y-i+1) 如果是负数注意转化成正数
/*
Work by: Suzt_ilymics
Knowledge: ??
Time: O(??)
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define int long long
#define orz cout<<"lkp AK IOI!"<<endl

using namespace std;
const int MAXN = 1e5+5;
const int INF = 1e9+7;
const int mod = 1e9+7;

int n, x = 1, y = 1;
int a[MAXN], b[MAXN];

int read(){
	int s = 0, f = 0;
	char ch = getchar();
	while(!isdigit(ch))  f |= (ch == '-'), ch = getchar();
	while(isdigit(ch)) s = (s << 1) + (s << 3) + ch - '0' , ch = getchar();
	return f ? -s : s;
}

int Gcd(int a, int b) { return !b ? a : Gcd(b, a % b); }
int Lcm(int a, int b) { return a / Gcd(a, b) * b; } 

void Merge(int &a1, int &m1, int a2, int m2) {
    if(m1 < m2) swap(m1, m2), swap(a1, a2);
    while(a1 % m2 != a2) a1 += m1;
    m1 = Lcm(m1, m2);
}

signed main()
{
    n = read();
    for(int i = 1; i <= n; ++i) a[i] = read();
    for(int i = 1; i <= n; ++i) x = Lcm(x, a[i]);
    for(int i = 1; i <= n; ++i) b[i] = ((a[i] - i + 1) % a[i] + a[i]) % a[i];
    int v1 = 0, n1 = 1;
    for(int i = 1; i <= n; ++i) Merge(v1, n1, b[i], a[i]);
    printf("%lld %lld", x, v1);
	return 0;
}
原文地址:https://www.cnblogs.com/Silymtics/p/14727911.html