软工划水日报-paddle的试运行 4/11

为了解决AI技术问题,继续求助万能的百度爹好了

今天试了下这个示例中的几个小程序

import numpy as np
import paddle as paddle
import paddle.dataset.mnist as mnist
import paddle.fluid as fluid
from PIL import Image
import matplotlib.pyplot as plt

# 定义多层感知器
def multilayer_perceptron(input):
    # 第一个全连接层,激活函数为ReLU
    hidden1 = fluid.layers.fc(input=input, size=100, act='relu')
    # 第二个全连接层,激活函数为ReLU
    hidden2 = fluid.layers.fc(input=hidden1, size=100, act='relu')
    # 以softmax为激活函数的全连接输出层,大小为label大小
    fc = fluid.layers.fc(input=hidden2, size=10, act='softmax')
    return fc

# 卷积神经网络
def convolutional_neural_network(input):
    # 第一个卷积层,卷积核大小为3*3,一共有32个卷积核
    conv1 = fluid.layers.conv2d(input=input,
                                num_filters=32,
                                filter_size=3,
                                stride=1)

    # 第一个池化层,池化大小为2*2,步长为1,最大池化
    pool1 = fluid.layers.pool2d(input=conv1,
                                pool_size=2,
                                pool_stride=1,
                                pool_type='max')

    # 第二个卷积层,卷积核大小为3*3,一共有64个卷积核
    conv2 = fluid.layers.conv2d(input=pool1,
                                num_filters=64,
                                filter_size=3,
                                stride=1)

    # 第二个池化层,池化大小为2*2,步长为1,最大池化
    pool2 = fluid.layers.pool2d(input=conv2,
                                pool_size=2,
                                pool_stride=1,
                                pool_type='max')

    # 以softmax为激活函数的全连接输出层,大小为label大小
    fc = fluid.layers.fc(input=pool2, size=10, act='softmax')
    return fc

# 定义输入层


image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# 获取分类器
# model = multilayer_perceptron(image)
model = convolutional_neural_network(image)

# 获取损失函数和准确率函数
cost = fluid.layers.cross_entropy(input=model, label=label)
avg_cost = fluid.layers.mean(cost)
acc = fluid.layers.accuracy(input=model, label=label)

# 获取测试程序
test_program = fluid.default_main_program().clone(for_test=True)
# 定义优化方法
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)

# 获取MNIST数据
train_reader = paddle.batch(mnist.train(), batch_size=128)
test_reader = paddle.batch(mnist.test(), batch_size=128)
# 定义一个使用CPU的执行器
place = fluid.CPUPlace()
exe = fluid.Executor(place)
# 进行参数初始化
exe.run(fluid.default_startup_program())
# 定义输入数据维度
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
# 开始训练和测试
for pass_id in range(5):
    # 进行训练
    for batch_id, data in enumerate(train_reader()):
        train_cost, train_acc = exe.run(program=fluid.default_main_program(),
                                        feed=feeder.feed(data),
                                        fetch_list=[avg_cost, acc])
        # 每100个batch打印一次信息
        if batch_id % 100 == 0:
            print('Pass:%d, Batch:%d, Cost:%0.5f, Accuracy:%0.5f' %
                  (pass_id, batch_id, train_cost[0], train_acc[0]))

    # 进行测试
    test_accs = []
    test_costs = []
    for batch_id, data in enumerate(test_reader()):
        test_cost, test_acc = exe.run(program=test_program,
                                      feed=feeder.feed(data),
                                      fetch_list=[avg_cost, acc])
        test_accs.append(test_acc[0])
        test_costs.append(test_cost[0])
    # 求测试结果的平均值
    test_cost = (sum(test_costs) / len(test_costs))
    test_acc = (sum(test_accs) / len(test_accs))
    print('Test:%d, Cost:%0.5f, Accuracy:%0.5f' % (pass_id, test_cost, test_acc))

 这个就是第一个教程的例子,我们构建了一个卷积神经网络,之后训练模型

通过这个模型,我们能得出精度相对较高的模型

原文地址:https://www.cnblogs.com/Sakuraba/p/14909480.html