数论(8):min_25 筛(扩展埃氏筛)

min_25 筛介绍

我们考虑这样一个问题。

[ans=sum_{i = 1}^nf(i)\ ]

其中 (1 le n le 10^{10})

其中 (f(i)) 是一个奇怪的函数、并不像 (μ(i),φ(i),iφ(i))那样具有那么好的性质。但是满足以下条件:

  1. (p)为质数,则 (f(p))是一个关于 (p)的多项式,比如 (μ(p)=−1,φ(p)=p−1).
  2. (p)为质数,(e)为正整数,则 (f(pe))可以很快求出。(通常是 (O(1))
  3. (f(n))为积性函数。

什么是积性函数:对于所有互质的 (a)(b) ,总有 (f(ab)=f(a)f(b)) ,则称 (f(x)) 为积性函数。

然后就可以使用 min_25 筛了。(顾名思义是 min_25 发明的)

首先,我们需要知道 min_25 筛是埃氏筛的一个拓展,它的思想很大一部分借助于埃氏筛。

回想一下埃氏筛,我们是每次将最小质因子为 (P_i) 的合数筛去,剩下的就是质数。

我们知道这些最小质因子至多为 (sqrt{n}),所以合数可以通过枚举最小质因子来计算,质数我们则使用另外的方法。

首先我们看质数的怎么做。

[sum_{i = 1}^n[i in Prime]f(i) ]

根据条件 (1),我们知道 (f(i))是一个多项式,这样的话我们可以按照次数将 (f(i))拆成 (i^k) 之和,因为 (i^k) 是一个完全积性函数(很快就有用的)。

[sum_{i = 1}^n[i in Prime]i^ksum_{i = 1}^n[i in Prime]i^k ]

为了计算这个,我们需要引入一个辅助数组 (g(n,j))。(鬼知道是怎么想到的)

[g(n,j) = sum_{i = 1}^n[i in Prime or minp(i) > P_j]i^k ]

其中 (minp(i))表示 (i)的最小质因子,所以

[sum_{i = 1}^n[i in Prime]i^k = g(n,|P|) ]

既然我们要使用质数,所以我们可以先用欧拉筛把所有 (le sqrt{n}) 的质数筛出来,同时还要预处理 (∑^j_{i=1}[iin Prime]i^k).

我们考虑 dp 计算。既然是埃氏筛,我们就要在 (g(n,j−1))中最小质因子为 (P_j)的合数筛去。

我们假设 (P_j^2 le n),否则肯定不行。

首先,由于它是完全积性函数,所以 (P_j) 可以直接提出来,剩下的减去 (i≤⌊frac{n}{P_j}⌋)中的数就可以了。

这些数中要求质因子 (≥P_j),所以是 (g(⌊frac{n}{P_j}⌋,j−1)),但是这里面质数被重复计算了,所以要减去里面的质数。

[g(n,j) = g(n,j - 1) - P_j^k(glfloor{frac{n}{P_j}} floor,j - 1) - sum_{i = 1}^{j - 1}[i in Prime]i^k ]

但是这样的话是 (O(n∗|P|))的,时间和空间都承受不了。但是我们发现我们可以使用一个优化。

我们发现 (g(n,j))(n)只有 (O(sqrt{n}))种取值,因为每次递归的时候是 (n)变为 (⌊frac{n}{P_j}⌋),而我们发现

[lfloorfrac{lfloorfrac{a}b floor}{c} floor = lfloorfrac{a}{bc} floor ]

所以 (n)只会变为 (⌊nx⌋),于是我们就直接 “手动” 离散化,这个可以看代码。

然后 (g(n,j))的第二维也可以滚动数组滚掉。所以时间 (O(sqrt{n}∗|P|)),空间 (sqrt{n}) .

预处理部分终于结束了,接下来我们考虑计算答案,首先我们还是需要一个辅助数组。

[S(n,j) = sum_{i = 1}^n[minp(i) > P_j]f(i) ]

像上面说的一样,分质数和合数两类计算。

前面两项指的是质数的部分,后面的和式是枚举合数的最小质因子 (P_k)和它的次数 (e)

这个跟 (g)不同,(S)是要按照第二维倒着计算的,但是我们也可以使用递归的方法来计算。

(S(n,0))就是最终答案。

要注意的是,(1)既不是质数也不是合数,所以最后要加上。


至于上面说的那个手动离散化,我们要开两个数组 (id1)(d2),分别记录 (≤ sqrt{n})(>sqrt{n})的部分的数值的编号。这样就不用 map 了,可以省掉一个 log

至于时间复杂度?我也不知道,总之跟杜教筛差不多,甚至有时候比杜教筛还要快。

有人说是什么 (Oleft(frac{n^{frac{3}{4}}}{log{n}} ight)) ,或者什么 (Oleft(n^{1 - epsilon} ight)) 。总之差不多就可以了。

min_25 筛代码实现:

#include<bits/stdc++.h>
#define Rint register LL
using namespace std;
typedef long long LL;
const int N = 1000003, mod = 1e9 + 7, inv2 = 500000004, inv3 = 333333336;
LL n, Sqr, pri[N], tot, pre1[N], pre2[N], ind1[N], ind2[N], g1[N], g2[N], w[N], cnt;
bool notp[N];
inline void init(LL m){
    notp[0] = notp[1] = true;
    for(Rint i = 2;i <= m;i ++){
        if(!notp[i]){
            pri[++ tot] = i;
            pre1[tot] = (pre1[tot - 1] + i) % mod;
            pre2[tot] = (pre2[tot - 1] + i * i) % mod;
        }
        for(Rint j = 1;j <= tot && i * pri[j] <= m;j ++){
            notp[i * pri[j]] = true;
            if(!(i % pri[j])) break;
        }
    }
}
inline LL S(LL x, int y){
    if(pri[y] >= x) return 0;
    LL k = (x <= Sqr) ? ind1[x] : ind2[n / x];
    LL ans = (g2[k] - g1[k] + pre1[y] - pre2[y] + mod + mod) % mod;
    for(Rint i = y + 1;i <= tot && pri[i] * pri[i] <= x;i ++){
        LL pe = pri[i];
        for(Rint e = 1;pe <= x;e ++, pe *= pri[i]){
            LL xx = pe % mod;
            ans = (ans + xx * (xx - 1) % mod * (S(x / pe, i) + (e > 1))) % mod;
        }
    }
    return ans % mod;
}
int main(){
    scanf("%lld", &n);
    Sqr = sqrt(n);
    init(Sqr);
    for(Rint i = 1, last;i <= n;i = last + 1){
        last = n / (n / i);
        w[++ cnt] = n / i;
        LL xx = w[cnt] % mod;
        g1[cnt] = (xx * (xx + 1) / 2 + mod - 1) % mod;
        g2[cnt] = (xx * (xx + 1) / 2 % mod * (2 * xx + 1) % mod * inv3 % mod + mod - 1) % mod;
        if(n / i <= Sqr) ind1[w[cnt]] = cnt;
        else ind2[last] = cnt;
    }
    for(Rint i = 1;i <= tot;i ++)
        for(Rint j = 1;j <= cnt && pri[i] * pri[i] <= w[j];j ++){
            LL k = (w[j] / pri[i] <= Sqr) ? ind1[w[j] / pri[i]] : ind2[n / (w[j] / pri[i])];
            g1[j] -= pri[i] * (g1[k] - pre1[i - 1] + mod) % mod;
            g2[j] -= pri[i] * pri[i] % mod * (g2[k] - pre2[i - 1] + mod) % mod;
            if(g1[j] < 0) g1[j] += mod;
            if(g2[j] < 0) g2[j] += mod;
        }
    printf("%lld", (S(n, 0) + 1) % mod);
}

讲那么多,写道题练手吧

UOJ188#【UR #13】Sanrd

题目链接:UOJ

这道题,也算是 min_25 的一个基础应用吧。。。

我们要求

[sum_{i = 1}^nf(i) ]

,其中 (f(i))表示 (i)的次大质因子。

按照套路,我们设

[S(n,j) = sum_{i = 1}^n[minp(i) > P_j]f(i) ]

所以

素数个数用 min_25 筛可以很快求出来。

#include<bits/stdc++.h>
#define Rint register LL
using namespace std;
typedef long long LL;
const int N = 1000003;
LL Sqr, pri[N], tot, g[N], w[N], id1[N], id2[N], cnt;
bool notp[N];
inline void init(int m){
    notp[0] = notp[1] = true;
    for(Rint i = 2;i <= m;i ++){
        if(!notp[i]) pri[++ tot] = i;
        for(Rint j = 1;j <= tot && i * pri[j] <= m;j ++){
            notp[i * pri[j]] = true;
            if(!(i % pri[j])) break;
        }
    }
}
inline LL solve(LL n, LL x, int y){
    if(x <= 1) return 0;
    LL ans = 0;
    for(Rint k = y + 1;k <= tot && pri[k] * pri[k] <= x;k ++){
        for(Rint pe = pri[k];pe * pri[k] <= x;pe *= pri[k]){
            LL kk = (x / pe <= Sqr) ? id1[x / pe] : id2[n / (x / pe)];
            ans += solve(n, x / pe, k) + pri[k] * (g[kk] - k + 1);
        }
    }
    return ans;
}
inline LL solve(LL n){
    Sqr = sqrt(n);
    tot = cnt = 0;
    init(Sqr);
    for(Rint i = 1, last;i <= n;i = last + 1){
        w[++ cnt] = n / i;
        last = n / w[cnt];
        g[cnt] = w[cnt] - 1;
        if(w[cnt] <= Sqr) id1[w[cnt]] = cnt;
        else id2[last] = cnt;
    }
    for(Rint i = 1;i <= tot;i ++)
        for(Rint j = 1;j <= cnt && pri[i] * pri[i] <= w[j];j ++){
            LL k = (w[j] / pri[i] <= Sqr) ? id1[w[j] / pri[i]] : id2[n / (w[j] / pri[i])];
            g[j] -= g[k] - i + 1;
        }
    return solve(n, n, 0);
}
int main(){
    LL l, r;
    scanf("%lld%lld", &l, &r);
    printf("%lld
", solve(r) - solve(l - 1));
}

参考

OI wiki:https://oi-wiki.org/math/min-25/

新版min25筛(O(n^(2/3)))详解:https://zhuanlan.zhihu.com/p/60378354

LaTeX数学公式大全:https://www.luogu.com.cn/blog/IowaBattleship/latex-gong-shi-tai-quan

The desire of his soul is the prophecy of his fate
你灵魂的欲望,是你命运的先知。

原文地址:https://www.cnblogs.com/RioTian/p/13754346.html