Logarithmic-Trigonometric积分系列(一)

[Largedisplaystyle int_{0}^{frac{pi }{2}}x^{2}lnleft ( sin x ight )lnleft ( cos x ight )mathrm{d}x ]


(Largemathbf{Solution:})
Tools Needed

[frac{1}{kleft ( j- k ight )^{2}}=frac{1}{j^{2}k}-frac{1}{j^{2}left ( k- j ight )}+frac{1}{jleft ( k- j ight )^{2}} ]

[frac{1}{kleft ( j+ k ight )^{2}}=frac{1}{j^{2}k}-frac{1}{j^{2}left ( k+ j ight )}-frac{1}{jleft ( k+j ight )^{2}} ]

[lnleft ( sin x ight )=-ln 2-sum_{k=1}^{infty }frac{cosleft ( 2kx ight )}{k} ]

[lnleft ( cos x ight )=-ln 2-sum_{k=1}^{infty }left ( -1 ight )^{k}frac{cosleft ( 2kx ight )}{k} ]

[cosleft ( 2jx ight )cosleft ( 2kx ight )=frac{1}{2}left [ cosleft ( 2left ( j-k ight )x ight )+cosleft ( 2left ( j+k ight )x ight ) ight ] ]

[int_{0}^{frac{pi }{2}}x^{2}cosleft ( 2kx ight )mathrm{d}x=egin{cases} left ( -1 ight )^{k}displaystyle frac{pi }{4k^{2}}& ext{ if } k eq 0 \ displaystyle frac{pi ^{3}}{24}& ext{ if } k=0 end{cases}]

Tool Use

[egin{align*} &int_{0}^{frac{pi }{2}}x^{2}lnleft ( sin x ight )lnleft ( cos x ight )mathrm{d}x \ &=int_{0}^{frac{pi }{2}}x^{2}left ( ln 2+sum_{k=1}^{infty }frac{cosleft ( 2kx ight )}{k} ight )left ( ln 2+sum_{k=1}^{infty }left ( -1 ight )^{k}frac{cosleft ( 2kx ight )}{k} ight )mathrm{d}x \ &=ln^{2}2 int_{0}^{frac{pi }{2}}x^{2}mathrm{d}x+ln 2sum_{k=1}^{infty }frac{1}{k}int_{0}^{frac{pi }{2}}x^{2}cosleft ( 4kx ight )mathrm{d}x\ &~~~+sum_{j=1}^{infty }sum_{k=1}^{infty }frac{left ( -1 ight )^{k}}{2jk}int_{0}^{frac{pi }{2}}x^{2}left [ cosleft ( 2left ( j-k ight )x ight )+cosleft ( 2left ( j+k ight )x ight ) ight ]mathrm{d}x \ &=frac{pi ^{3}}{24}ln^{2}2+ln 2frac{pi }{16}zeta left ( 3 ight ) \ &~~~+frac{pi }{8}sum_{j=1}^{infty }frac{left ( -1 ight )^{j}}{j}sum_{k=1}^{j-1}frac{1}{kleft ( j-k ight )^{2}}+frac{pi }{8}sum_{j=1}^{infty }frac{left ( -1 ight )^{j}}{j^{2}}frac{pi ^{2}}{6}+frac{pi }{8}sum_{j=1}^{infty }frac{left ( -1 ight )^{j}}{j}sum_{k=j+1}^{infty }frac{1}{kleft ( j-k ight )^{2}} \ &~~~+frac{pi }{8}sum_{j=1}^{infty }frac{left ( -1 ight )^{j}}{j}sum_{k=1}^{infty }frac{1}{kleft ( j+k ight )^{2}} \ &=frac{pi ^{3}}{24}ln^{2}2+ln 2frac{pi }{16}zeta left ( 3 ight ) \ &~~~+frac{pi }{8}sum_{j=1}^{infty }frac{left ( -1 ight )^{j}}{j}left ( frac{2}{j^{2}}H_{j-1}+frac{1}{j}H_{j-1}^{left ( 2 ight )} ight )-frac{pi ^{5}}{576}+frac{pi }{8}sum_{j=1}^{infty }frac{left ( -1 ight )^{j}}{j}left ( -frac{1}{j^{2}}H_{j}+frac{1}{j}frac{pi ^{2}}{6} ight )\ &~~~+frac{pi }{8}sum_{j=1}^{infty }frac{left ( -1 ight )^{j}}{j}left ( frac{1}{j^{2}}H_{j}-frac{1}{j}frac{pi ^{2}}{6}+frac{1}{j}H_{j}^{left ( 2 ight )} ight ) \ &=frac{pi ^{3}}{24}ln^{2}2+ln 2frac{pi }{16}zeta left ( 3 ight ) \ &~~~+frac{pi }{8}sum_{j=1}^{infty }frac{left ( -1 ight )^{j}}{j}left ( frac{2}{j^{2}}H_{j}+frac{2}{j}H_{j}^{left ( 2 ight )}-frac{3}{j^{3}} ight )-frac{pi ^{5}}{576} \ &=frac{pi ^{3}}{24}ln^{2}2+ln 2frac{pi }{16}zeta left ( 3 ight )+frac{11pi ^{5}}{5760}+frac{pi }{4}sum left ( -1 ight )^{j}left ( frac{1}{j^{3}}H_{j}+frac{1}{j^{2}}H_{j}^{left ( 2 ight )} ight ) \ &=frac{pi ^{3}}{24}ln^{2}2+ln 2frac{pi }{16}zeta left ( 3 ight )-frac{pi ^{5}}{960}-frac{pi }{16}sum_{j=1}^{infty }frac{H_{2j}}{j^{3}} end{align*}]

Using the known result

[sum_{n=1}^{infty }frac{H_{2n}}{n^{3}}=-frac{pi ^{4}}{15}-frac{1}{3}pi ^{2}ln^{2}2+frac{ln^{4}2}{3}+8mathrm{Li}_{4}left ( frac{1}{2} ight )+7ln 2zeta left ( 3 ight ) ]

So here is the final result:

[Largeoxed{displaystyle egin{align*} int_{0}^{frac{pi }{2}}x^{2}lnleft ( sin x ight )lnleft ( cos x ight )mathrm{d}x&=color{blue}{frac{pi ^{3}}{16}ln^{2}2+frac{pi ^{5}}{320}-frac{3}{8}ln 2zeta left ( 3 ight )}\ &~~~color{blue}{-frac{pi }{48}ln^{4}2-frac{1}{2}mathrm{Li}_{4}left ( frac{1}{2} ight )} end{align*}}]

原文地址:https://www.cnblogs.com/Renascence-5/p/5488576.html