一个超几何函数类型的积分

[Largedisplaystyle int_{0}^{1}xsqrt{1+x^{3}}mathrm{d}x ]


(Largemathbf{Solution:})
易知

[int_{0}^{1}xsqrt{1+x^{3}}mathrm{d}x=frac{1}{3}int_{0}^{1}x^{-frac{1}{3}}left ( 1+x ight )^{frac{1}{2}}mathrm{d}x ]

下面我们来看这个一般形式

[int_{0}^{u}y^{b -1}left ( u-y ight )^{c-b-1}left ( y+frac{u}{x} ight )^{-a}mathrm{d}t ]

首先我们引入Beta函数

[mathrm{B}left ( a,b ight )=int_{0}^{1}t^{a-1}left ( 1-t ight )^{b-1}mathrm{d}t ]

然后引入超几何函数 (_{2}F_{1}) 的定义

[_{2}F_{1}left ( a,b;c;x ight )=frac{1}{mathrm{B}left ( b,c-b ight )}int_{0}^{1}t^{b-1}left ( 1-t ight )^{c-b-1}left ( 1-tx ight )^{-a}mathrm{d}t ]

简单调整之后我们可以得到

[int_{0}^{1}t^{b}left ( 1-t ight )^{c}left ( 1-tx ight )^{a}mathrm{d}t=mathrm{B}left ( b+1,c+1 ight )\, _{2}F_{1}left (-a,b+1;b+c+2;x ight ) ]

做代换 (y=tu~,~x ightarrow -x)后,我们有

[egin{align*} &int_{0}^{1}t^{b}left ( 1-t ight )^{c}left ( 1-tx ight )^{a}mathrm{d}t=int_{0}^{1}left ( frac{y}{u} ight )^{b}left ( 1-frac{y}{u} ight )^{c}left ( 1+frac{yx}{u} ight )^{a}frac{1}{u}mathrm{d}y\ &=left ( frac{u}{x} ight )^{-a}u^{-b-c-1}int_{0}^{u}y^{b}left ( u-y ight )^{c}left ( y+frac{u}{x} ight )^{a}mathrm{d}y end{align*}]

然后做代换 (b+1 ightarrow b~,~c+1 ightarrow c-b~,~a ightarrow -a) 我们有

[int_{0}^{u}y^{b -1}left ( u-y ight )^{c-b-1}left ( y+frac{u}{x} ight )^{-a}mathrm{d}t=left ( frac{u}{x} ight )^{a}u^{c-1}mathrm{B}left ( b,c-b ight )\, _{2}F_{1}left ( a,b;c;-x ight ) ]

所以我们令 (u=1~,~x=1~,~b=dfrac{2}{3}~,~c=dfrac{5}{3}~,~a=-dfrac{1}{2}),可以得到

[int_{0}^{1}x^{-frac{1}{3}}left ( 1+x ight )^{frac{1}{2}}mathrm{d}x=frac{3}{2}\, _{2}F_{1}left ( -frac{1}{2},frac{2}{3};frac{5}{3};-1 ight ) ]

所以

[Largeoxed{displaystyle int_{0}^{1}xsqrt{1+x^{3}}mathrm{d}x=color{blue}{frac{1}{2}\, _{2}F_{1}left ( -frac{1}{2},frac{2}{3};frac{5}{3};-1 ight )}} ]

原文地址:https://www.cnblogs.com/Renascence-5/p/5479354.html