复杂的对数积分(三)

[Largedisplaystyle int_0^infty frac{ln left(1+dfrac{pi^2}{4x} ight)}{e^{sqrt{x}}-1}mathrm{d}x ]


(Largemathbf{Solution:})
Step 1 - Split
Let (displaystyle I=int_0^infty frac{ln left(1+dfrac{pi^2}{4x} ight)}{e^{sqrt{x}}-1}mathrm{d}x). Now put (xmapsto x^2)

[egin{align*} I &=2int_0^infty frac{xlnleft( 1+dfrac{pi^2}{4x^2} ight)}{e^x-1}mathrm{d}x\&= 2int_0^infty frac{x ln left( 4x^2+pi^2 ight)-xln (4)-2xln(x)}{e^x-1}mathrm{d}x \ &= 2underbrace{int_0^infty frac{x ln left( 4x^2+pi^2 ight)}{e^x-1}mathrm{d}x}_{=I_1}-4ln(2) underbrace{int_0^infty frac{x}{e^x-1}mathrm{d}x}_{=I_2}-4 underbrace{int_0^infty frac{xln(x)}{e^x-1}mathrm{d}x}_{=I_3} ag{1} end{align*} ]

Step 2 - Evaluation of (I_3)
Note that for (Re (z)>1), we have

[egin{align*} int_0^infty frac{x^{z-1}}{e^x-1}mathrm{d}x = Gamma(z)zeta(z) ag{2}end{align*} ]

Differentiate both sides with respect to (z).

[egin{align*} int_0^infty frac{x^{z-1}ln(x)}{e^x-1}mathrm{d}x= psi_0(z)Gamma(z) zeta(z)+Gamma(z)zeta '(z) ag{3}end{align*} ]

Put (z=2) to obtain

[egin{align*}int_0^infty frac{x ln(x)}{e^x-1}mathrm{d}x &= frac{pi^2}{6}(1-gamma)-frac{pi^2}{6} left(12 lnmathbf{A}-gamma-ln(2pi) ight) \&= frac{pi^2}{6} left( 1+ln(2pi)-12 lnmathbf{A} ight) ag{4}end{align*} ]

Step 3 - Evaluation of (I_2)
(I_2) can be evaluated easily by means of equation (2).

[egin{align*} int_0^infty frac{x}{e^x-1}mathrm{d}x = frac{pi^2}{6} ag{5} end{align*}]

Step 4 - Evaluation of (I_1)
From here begins the dirty job. We require equation (4) of Adamchik's paper.

[egin{align*} int_0^infty frac{x ln(x^2+z^2)}{e^{2pi x}-1}mathrm{d}x &= zeta'(-1,z)-frac{z^2}{2}ln z+frac{z^2}{4}+frac{z}{2}ln z \ &~~~-2z int_0^infty frac{arctan left( dfrac{x}{z} ight)}{e^{2pi x}-1}mathrm{d}x quad Re(z)>0 end{align*}]

Now, from Binet's second formula we have

[egin{align*} int_0^infty frac{x ln(x^2+z^2)}{e^{2pi x}-1}mathrm{d}x &= zeta'(-1,z)-frac{z^2}{2}ln z+frac{z^2}{4}+frac{z}{2}ln z \ &quad -z left{ln Gamma(z) -left(z-frac{1}{2} ight)ln z+z -frac{1}{2}ln(2pi) ight} ag{6} end{align*} ]

Set (x mapsto dfrac{x}{2pi}) and put (z=dfrac{1}{4}).

[egin{align*} &frac{1}{4pi^2}int_0^infty frac{x ln left( 4x^2+pi^2 ight)}{e^x-1}mathrm{d}x-frac{ln 2+ln(2pi)}{12} \=& zeta' left(-1, frac{1}{4} ight)+frac{1}{16}ln(2)+frac{1}{64}-frac{1}{4}ln(2)-frac{1}{4} left{ln Gamma left(frac{1}{4} ight) -frac{ln (2)}{2}+frac{1}{4} -frac{1}{2}ln(2pi) ight} \ &int_0^infty frac{x ln left(4x^2 +pi^2 ight)}{e^x-1}mathrm{d}x \=& 4pi^2 zeta' left( -1,frac{1}{4} ight)+frac{pi^2}{12}ln(2)+frac{5}{6}pi^2 ln(2pi) -frac{3}{16}pi^2-pi^2 ln Gamma left( frac{1}{4} ight) ag{7} end{align*} ]

Now, from equations (3) and (11) of Adamchik's paper we get

[egin{align*} zeta' left(-1,frac{1}{4} ight) &= zeta'(-1)-frac{3}{4}ln Gamma left( frac{1}{4} ight)-ln mathrm{G} left( frac{1}{4} ight) \ &= frac{1}{12}-lnmathbf{A}-frac{3}{4}ln Gamma left( frac{1}{4} ight)-left(frac{3}{32} -frac{mathbf{G}}{4pi}-frac{3}{4}ln Gamma left( frac{1}{4} ight)-frac{9}{8}lnmathbf{A} ight) \ &= frac{lnmathbf{A}}{8}+frac{mathbf{G}}{4pi}-frac{1}{96} ag{8} end{align*} ]

where (mathrm{G}(z)) denotes the Barnes G Function.
Using this result in (7), we get

[egin{align*} &int_0^infty frac{x ln left(4x^2 +pi^2 ight)}{e^x-1}mathrm{d}x \&= 4pi^2 left( frac{lnmathbf{A}}{8}+frac{mathbf{G}}{4pi}-frac{1}{96} ight)+frac{pi^2}{12}ln(2)+frac{5}{6}pi^2 ln(2pi) -frac{3}{16}pi^2-pi^2 ln Gamma left( frac{1}{4} ight) \ &= frac{pi^2}{2}lnmathbf{A}+frac{pi^2}{12}ln(2)-frac{11}{48}pi^2+frac{5pi^2}{6}ln(2pi) +pi mathbf{G} - pi^2 ln Gamma left( frac{1}{4} ight) ag{9} end{align*} ]

Step 5 - Final Answer
Combining everything with the help of equation (1), we get

[egin{align*} I &= 2 left(frac{pi^2}{2}lnmathbf{A}+frac{pi^2}{12}ln(2)-frac{11}{48}pi^2+frac{5pi^2}{6}ln(2pi) +pi mathbf{G} - pi^2 ln Gamma left( frac{1}{4} ight) ight) \&~~~-4ln(2) left(frac{pi^2}{6} ight)-4 left( frac{pi^2}{6} left( 1+ln(2pi)-12 lnmathbf{A} ight) ight) \ &=Largeoxed{displaystylecolor{blue}{pi^2 left{ ln left( frac{pi mathbf{A}^9 sqrt{2}}{Gamma^2 left( dfrac{1}{4} ight)} ight)-frac{9}{8} ight}+2pi mathbf{G}}} end{align*} ]

原文地址:https://www.cnblogs.com/Renascence-5/p/5459625.html