一个含有Fibonacci Number的级数

[Largedisplaystyle sum_{n=0}^infty frac{1}{F_{2n+1}+1}=frac{sqrt5}{2} ]


(Largemathbf{Proof:})
Let (phi=dfrac{1+sqrt{5}}{2}) denote the golden ratio. Then consider the partial sum,

[egin{align*} sum_{n=0}^Nfrac{1}{1+F_{2n+1}}&= sum_{n=0}^Nfrac{1}{1+dfrac{phi^{2n+1}+phi^{-(2n+1)}}{sqrt{5}}} \ &= sqrt{5} sum_{n=0}^{N}frac{phi^{2n+1}}{phi^{2(2n+1)}+sqrt{5}phi^{2n+1}+1} \ &=sqrt{5} sum_{n=0}^{N}frac{phi^{2n+1}}{(phi^{2n+1}+phi)left( phi^{2n+1}+dfrac{1}{phi} ight)}\ &= sqrt{5} sum_{n=0}^{N}frac{phi^{2n+1}}{(phi^{2n}+1)left( phi^{2n+2}+1 ight)} \ &= frac{phisqrt{5}}{1-phi^2}sum_{n=0}^Nleft(frac{phi^{2n}}{1+phi^{2n}}-frac{phi^{2n+2}}{1+phi^{2n+2}} ight) \ &=sqrt{5}left(frac{phi^{2N+2}}{1+phi^{2N+2}} -frac{1}{2} ight) end{align*} ]

Let (N oinfty) to get

[Largeoxed{displaystyle sum_{n=0}^inftyfrac{1}{1+F_{2n+1}}=color{blue}{frac{sqrt{5}}{2}}} ]

原文地址:https://www.cnblogs.com/Renascence-5/p/5458328.html