一个Log-Tan积分

[Largeint_{0}^{pi } heta ln anfrac{ heta }{2}mathrm{d} heta ]


(Largemathbf{Solution:})
显然

[int_{0}^{pi } heta ln anfrac{ heta }{2}mathrm{d} heta =4int_{0}^{pi /2}xln an xmathrm{d}x ]

利用 (mathbf{Lobachevskiy}) 函数的定义

[mathrm{L}left ( x ight )=-int_{0}^{x}lncos xmathrm{d}x~,~ ~ ~ ~ ~ -frac{pi }{2}leq xleq frac{pi }{2} ]

所以

[egin{align*} int_{0}^{pi /2}xln an xmathrm{d}x &= xleft [ mathrm{L}left ( x ight )+mathrm{L}left ( frac{pi }{2}-x ight ) ight ]_{0}^{pi /2}-int_{0}^{pi /2}left [ mathrm{L}left ( x ight )+mathrm{L}left ( frac{pi }{2}-x ight ) ight ]mathrm{d}x\ &= left ( frac{pi }{2} ight )^{2}ln 2-2int_{0}^{pi /2}mathrm{L}left ( x ight )mathrm{d}x end{align*}]

再利用

[mathrm{L}left ( x ight )=xln 2-frac{1}{2}sum_{k=1}^{infty }frac{left ( -1 ight )^{k-1}}{k^{2}}sin 2kx ]

就能计算得

[egin{align*} int_{0}^{pi /2}mathrm{L}left ( x ight )mathrm{d}x&=frac{1}{2}left ( frac{pi }{2} ight )^{2}ln 2-frac{1}{2}sum_{k=1}^{infty }frac{left ( -1 ight )^{k-1}}{k^{2}}int_{0}^{pi /2}sin 2kxmathrm{d}x \ &= frac{pi ^{2}}{8}ln 2-frac{1}{2}sum_{k=1}^{infty }frac{1}{left ( 2k-1 ight )^{3}} end{align*}]

所以

[egin{align*} int_{0}^{pi/2}xln an xmathrm{d}x &=frac{pi ^{2}}{4}ln 2-2left [ frac{pi ^{2}}{8}ln 2-frac{1}{2}sum_{k=1}^{infty }frac{1}{left ( 2k-1 ight )^{3}} ight ] \ &=sum_{k=1}^{infty }frac{1}{left ( 2k-1 ight )^{3}}\ &=sum_{k=1}^{infty } frac{1}{k^{3}}-sum_{k=1}^{infty }frac{1}{left ( 2k ight )^{3}}=frac{7}{8}zeta left ( 3 ight ) end{align*}]

亦即

[Largeoxed{displaystyle int_{0}^{pi } heta ln anfrac{ heta }{2}mathrm{d} heta=color{blue}{frac{7}{2}zeta left ( 3 ight )}} ]

另外还可以得到

[int_{0}^{pi } heta ln anfrac{ heta }{2}mathrm{d} heta=sum_{n=1}^{infty }frac{1}{n^{2}}left [ psi left ( n+frac{1}{2} ight )-psi left ( frac{1}{2} ight ) ight ]=frac{7}{2}zeta left ( 3 ight ) ]

[Largecolor{purple}{sum_{n=1}^{infty }frac{1}{n^{2}}psi left ( n+frac{1}{2} ight )=frac{7}{2}zeta left ( 3 ight )-left ( gamma +2ln 2 ight )frac{pi ^{2}}{6}} ]

原文地址:https://www.cnblogs.com/Renascence-5/p/5436780.html