3.OSI开放式系统互联通信参考模型

互联网分层模型

互联网的逻辑实现被分为好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。用户接触到的只是最上面的那一层,根本不会感觉到下面的几层。要理解互联网就需要自下而上理解每一层的实现的功能。osi七层模型如上图所示,互联网按照不同的模型划分会有不用的分层,但是不论按照什么模型去划分,越往上的层越靠近用户,越往下的层越靠近硬件。在软件开发中使用最多的是将互联网划分为五个分层的模型。

接下来我们一层一层的自底向上介绍一下每一层。

物理层

我们的电脑要与外界互联网通信,需要先把电脑连接网络,我们可以用双绞线、光纤、无线电波等方式。这就叫做”实物理层”,它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。

数据链路层

单纯的0和1没有任何意义,所以我们使用者会为其赋予一些特定的含义,规定解读电信号的方式:例如:多少个电信号算一组?每个信号位有何意义?这就是”数据链接层”的功能,它在”物理层”的上方,确定了物理层传输的0和1的分组方式及代表的意义。早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做"以太网"(Ethernet)的协议,占据了主导地位。

以太网规定,一组电信号构成一个数据包,叫做"帧"(Frame)。每一帧分成三个部分:帧头、数据、帧尾。
帧头包含有源MAC地址和目标MAC地址各占6个字节,以及类型字段占4个字节,里面包含的信息用来标志上一层使用的是什么协议,以便接收端把收到的MAC帧的数据部分上交给上一层的这个协议。

数据部分只有一个字段,其长度在46到1500字节之间,包含的信息是网络层传下来的数据。
帧尾也只有一个字段,长度为4个字节,包含有帧校验序列(让接收帧的网卡或接口判断是否发生了错误)。
因此,整个"帧"最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。

通过以上可以发现,发送者和接受者是MAC地址去标识的。我们一般通过ARP协议来获取接受方的MAC地址,有了MAC地址之后,如何把数据准确的发送给接收方呢?其实这里以太网采用了一种很”原始”的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机都发送,让每台计算机读取这个包的帧头,找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式叫”广播”(broadcasting)。

网络层

按照以太网协议的规则我们可以依靠MAC地址来向外发送数据。理论上依靠MAC地址,你电脑的网卡就可以找到身在世界另一个角落的某台电脑的网卡了,但是这种做法有一个重大缺陷就是以太网采用广播方式发送数据包,所有成员人手一”包”,不仅效率低,而且发送的数据只能局限在发送者所在的子网络。也就是说如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理且必要的,因为如果互联网上每一台计算机都会收到互联网上收发的所有数据包,那是不现实的。

因此,必须找到一种方法区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用”路由”方式发送。这就导致了”网络层”的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址叫”网络地址”,简称”网址”。

“网络层”出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是网络管理员分配的。网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。

规定网络地址的协议,叫IP协议。它所定义的地址,被称为IP地址。目前,广泛采用的是IP协议第四版,简称IPv4。IPv4这个版本规定,网络地址由32个二进制位组成,我们通常习惯用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255。

根据IP协议发送的数据,叫IP数据包。IP数据包也分为"包头"和"数据"两个部分:"包头"部分主要包括版本、长度、IP地址等信息,"数据"部分则是IP数据包的具体内容。IP数据包的"包头"部分的长度为20到60字节,整个数据包的总长度最大为65535字节。

传输层

有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。但问题是同一台主机上会有许多程序都需要用网络收发数据,比如QQ和浏览器这两个程序都需要连接互联网并收发数据,我们如何区分某个数据包到底是归哪个程序的呢?也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做”端口”(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

“端口”是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户一般选用大于1023的端口。有了IP和端口我们就能实现唯一确定互联网上一个程序,进而实现网络间的程序通信。

我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。UDP数据包,也是由"包头"和"数据"两部分组成:"包头"部分主要定义了发出端口和接收端口,"数据"部分就是具体的内容。UDP数据包非常简单,"包头"部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。为了解决这个问题,提高网络可靠性,TCP协议就诞生了。TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

应用层

应用程序收到”传输层”的数据,接下来就要对数据进行解包。由于互联网是开放架构,数据来源五花八门,必须事先规定好通信的数据格式,否则接收方根本无法获得真正发送的数据内容。”应用层”的作用就是规定应用程序使用的数据格式,例如我们TCP协议之上常见的Email、HTTP、FTP等协议,由这些协议组成互联网协议的应用层。

如下图所示,发送方的HTTP数据经过互联网的传输过程中会依次添加各层协议的标头信息,接收方收到数据包之后再依次根据协议解包得到数据。

一个初识C++的小白
原文地址:https://www.cnblogs.com/Real-m/p/14097698.html