【Python代码】TSNE高维数据降维可视化工具 + python实现

1.概述

1.1 什么是TSNE

  • TSNE是由T和SNE组成,T分布和随机近邻嵌入(Stochastic neighbor Embedding).
  • TSNE是一种可视化工具,将高位数据降到2-3维,然后画成图。
  • t-SNE是目前效果最好的数据降维和可视化方法
  • t-SNE的缺点是:占用内存大,运行时间长。

1.2 TSNE原理

1.2.1入门的原理介绍

举一个例子,这是一个将二维数据降成一维的任务。我们要怎么实现?


首先,我们想到的最简单的方法就是舍弃一个维度的特征,将所有点映射到x轴上:

很明显,结果来看,蓝色和黄色的点交叠在一起,可是他们在二维上明明不属于一类


TSNE就是计算某一个点到其他所有点的距离,然后映射到t分布上,效果就会好一些。

1.2.2进阶的原理介绍

  • t-SNE的降维关键:把高纬度的数据点之间的距离转化为高斯分布概率

1.2.2.1 高维距离表示

  • 如果两个点在高维空间距离越近,那么这个概率值越大。
  • 我们来看下面公式,两个公式的内容一致,只是写法不同。

[P_{j|i} = frac{e^{frac{-||x_i-x_j||^2}{2sigma_i^2}}}{sum_{i ot=k}e^{frac{-||x_i-x_k||^2}{2sigma_i^2}}} ]

这个形式的公式,只是明显的展示这是高斯分布概率


[P_{j|i} = frac{exp(-||x_i-x_k||^2/(2sigma_i^2))}{sum_{i ot=k}exp(-||x_i-x_k||^2/(2sigma_i^2))} ]

(||x_i-x_k||^2)是两个点之间的距离;
距离越大,(exp(-||x_i-x_k||^2/(2sigma_i^2)))越小;
距离越小,(exp(-||x_i-x_k||^2/(2sigma_i^2)))越大;
分母是一个常数,对于一个固定的点(x_i);


  • 这个算法的创新点(sigma_i)对于每一个(x_i)都是不同的,是由事先设定的困惑性影响,(sigma_i)是自动设定的。

现在我们能得到(p_{j|i}),然后计算联合分布

[P_{ij} = frac{P_{j|i}+P_{i|j}}{2N} ]


  • 从上文中,我们用高斯分布概率来表示两个高维点之间的相似性,再次复述一次两个点越相似,(p_{ij})越大

1.2.2.2 低维相似度表示

  • 在低纬度中,我们使用t分布来表示相似性。这里不探究为什么使用t分布而不是其他分布,具体内容可以看论文

[Q_{ij} = frac{(1+||y_i-y_j||^2)^{-1}}{sum_{k ot=l}(1+||y_k-y_l||^2)^{-1}} ]

(y_i,y_j)是低纬度的点


1.2.2.3 惩罚函数

  • 现在我们有方法衡量高纬度和低纬度的点的相似性,我们如何保证高纬度相似度高的点在低纬度相似度也高?
  • t-SNE使用的是KL散度(Kullback-Leibler divergence)

[KL(P|Q) = sum_{i ot=j}P_{ij}logfrac{P_{ij}}{Q_{ij}} ]

1.2.2.4 为什么是局部相似性

  • (P_{ij})很大,(Q_{ij})很小(高维空间距离近,低维空间距离远)的惩罚很大,但是高维空间距离远,低维空间距离近的惩罚小。

1.2.2.5 为什么选择高斯和t分布

  • 降维必然带来信息损失,TSNE保留局部信息必然牺牲全局信息,而因为t分布比 高斯分布更加长尾,可以一定程度减少这种损失。

2 python实现

函数参数表:

  • parameters 描述
  • n_components 嵌入空间的维度
  • perpexity 混乱度,表示t-SNE优化过程中考虑邻近点的多少,默认为30,建议取值在5到50之间
  • early_exaggeration 表示嵌入空间簇间距的大小,默认为12,该值越大,可视化后的簇间距越大
  • learning_rate 学习率,表示梯度下降的快慢,默认为200,建议取值在10到1000之间
  • n_iter 迭代次数,默认为1000,自定义设置时应保证大于250
  • min_grad_norm 如果梯度小于该值,则停止优化。默认为1e-7
  • metric 表示向量间距离度量的方式,默认是欧氏距离。如果是precomputed,则输入X是计算好的距离矩阵。也可以是自定义的距离度量函数。
  • init 初始化,默认为random。取值为random为随机初始化,取值为pca为利用PCA进行初始化(常用),取值为numpy数组时必须shape=(n_samples, n_components)
  • verbose 是否打印优化信息,取值0或1,默认为0=>不打印信息。打印的信息为:近邻点数量、耗时、σ
    、KL散度、误差等
  • random_state 随机数种子,整数或RandomState对象
  • method 两种优化方法:barnets_hut和exact。第一种耗时O(NlogN),第二种耗时O(N^2)但是误差小,同时第二种方法不能用于百万级样本
  • angle 当method=barnets_hut时,该参数有用,用于均衡效率与误差,默认值为0.5,该值越大,效率越高&误差越大,否则反之。当该值在0.2-0.8之间时,无变化。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import manifold,datsets
'''X是特征,不包含target;X_tsne是已经降维之后的特征'''
tsne = manifold.TSNE(n_components=2, init='pca', random_state=501)
X_tsne = tsne.fit_transform(X)
print("Org data dimension is {}. 
      Embedded data dimension is {}".format(X.shape[-1], X_tsne.shape[-1]))
      
  '''嵌入空间可视化'''
x_min, x_max = X_tsne.min(0), X_tsne.max(0)
X_norm = (X_tsne - x_min) / (x_max - x_min)  # 归一化
plt.figure(figsize=(8, 8))
for i in range(X_norm.shape[0]):
    plt.text(X_norm[i, 0], X_norm[i, 1], str(y[i]), color=plt.cm.Set1(y[i]), 
             fontdict={'weight': 'bold', 'size': 9})
plt.xticks([])
plt.yticks([])
plt.show()

参考内容

  1. sklearn中tsne可视化
  2. 笔记 | 什么是TSNE
  3. 理解TSNE算法
原文地址:https://www.cnblogs.com/PythonLearner/p/12903615.html