一个组合恒等式

$k> 0$ 。当 $k$为奇数时,
egin{aligned}
sum_{i = 0}^{k} inom{n}{i} &= [inom{n}{0} + inom{n}{1} ] + [inom{n}{2} + inom{n}{3} ] + dots + [inom{n}{k-1} + inom{n}{k} ] \
&= inom{n+1}{1} + inom{n+1}{3} + dots + inom{n+1}{k}
end{aligned}
又有
egin{aligned}
sum_{i = 0}^{k} inom{n}{i} &= inom{n}{0} + [inom{n}{1} + inom{n}{2}] + [inom{n}{3} + inom{n}{4}] + dots + [inom{n}{k-2} + inom{n}{k-1}] + inom{n}{k} \
&= inom{n}{0} + inom{n+1}{2} + inom{n+1}{4} + dots + inom{n+1}{k-1} + inom{n}{k} \
&= inom{n+1}{0} + inom{n+1}{2} + inom{n+1}{4} + dots + inom{n+1}{k-1} + inom{n}{k}
end{aligned}

两式相加得

egin{aligned}
2 sum_{i = 0}^{k} inom{n}{i} = inom{n}{k} + sum_{i=0}^{k} inom{n+1}{i}
end{aligned}

当 $k$ 为偶数时,经过类似的推导,可得

egin{aligned}
2 sum_{i = 0}^{k} inom{n}{i} = inom{n}{k} + sum_{i=0}^{k} inom{n+1}{i}
end{aligned}

容易验证,当 $k = 0$ 时,上式仍成立。于是,对任意 $0 le k le n$ 有

egin{aligned}
2 sum_{i = 0}^{k} inom{n}{i} = inom{n}{k} + sum_{i=0}^{k} inom{n+1}{i}
end{aligned}

亦即

egin{equation}
sum_{i=0}^{k} inom{n+1}{i} = 2 sum_{i = 0}^{k} inom{n}{i} - inom{n}{k} label{E:1}
end{equation}

为了简便,将 $ sum_{i=0}^{k} inom{n}{i}$ 记做 $S(n, k)$ 。反复使用 eqref{E:1} 式,可以得到

egin{aligned}
S(n, k) = 2^{n-k} S(k, k) - 2^{n - k - 1} inom{k}{k} - 2^{n - k - 2} inom{k+1}{k} - dots - 2^{1} inom{n-2}{k} - 2^{0} inom{n-1}{k}
end{aligned}

Reference

  1. https://mathoverflow.net/questions/17202/sum-of-the-first-k-binomial-coefficients-for-fixed-n
原文地址:https://www.cnblogs.com/Patt/p/9404636.html