狄利克雷卷积和莫比乌斯反演

狄利克雷卷积是函数与函数之间的运算

运算定义为:$(f*g)(x) = sum_{d|x}{f(d) * g(frac{x}{d})}$

该运算有交换律:$f*g=g*f$

有结合律:$f*(g*h)=(f*g)*h$

有分配率:$f*(g+h)=f*g+f*h$

在这种新定义的运算中有许多特殊的元素

  $e$ 满足 $e(n) = [n==1]$ 即当只有$n=1$时$e(n)=1$,否则为$0$

  (对命题$P$,引入符号$[P]$,如果命题成立则值为$1$,否则为$0$.)

  $d$ 满足$d(n) = sum_{i<=n} [i|n]$

  $sigma$ 满足$sigma(n) = sum_{i|n}{i}$

  $varphi$ 满足$varphi(n) = sum_{i<=n} [gcd(i,n) == 1]$

  $mu$ 满足$mu(n) = left{egin{matrix} 1 & n == 1 \ (-1)^k & a1 = a2 = …… = ak\ 0 & otherwise end{matrix} ight.$ 其中 $n = p1^{a1}*p2^{a2}*……*pk^{ak}$

  $I$ 满足$I(n) = 1$

  $id$ 满足$id(n) = n$

以上函数均为积性函数,(也易证)

函数简单运算

1.$e$为元,有$e*f=f$

解释:$e*f = sum_{d|n}e(d)f(frac{n}{d})$,当且仅当$d = 1$时$e(d) = 1$,此时$e(d)f(frac{n}{d}) = e(1)f(n) = f(n)$,当$d!=1$时$e(d)=0$,所以$e*f = f$

2.$mu*I = e$

解释:$mu * I = sum_{d|n}{mu(n)I(frac{n}{d})} = sum_{d|n}{mu(n)}$,又由$mu(n)$为积性函数,当$n!=1$时

$sum_{d|n}{mu(n)} = (1+mu(p1)+mu(p1^2)+……+mu(p1^{a1}))(……)(1+mu(pk)+……+mu(pk^{ak}))$,又由定义$mu(p^i)=0 (i>=2)$,$mu(p)=1 (p为质数)$

$ herefore sum_{d|n}{mu(n)} = (1+mu(p1))(……)(1+mu(pk)) = (1-1)(……)(1-1) = 0$

只有当$n == 1$时$mu(n) = 1$,所以$mu*I = e$

3.$varphi*i = id$

解释:$varphi*I = sum_{d|n}varphi(d)I(frac{n}{d}) = sum_{d|n}varphi(d)$

$=(1+varphi(p1)+varphi(p1^2)+……+varphi(p1^{a1}))(……)(1+varphi(pk)+……+varphi(pk^{ak}))$

而 $1+varphi(p)+varphi(p^2)+……+varphi(p^a) = 1+p-1+p^2-p+p^3-p^2+……+p^a-p^{a-1} = p^a$

$ herefore 原式=p1^{a1}p2^{a2}……pk^{ak} = n = id(n)$

4.$I*I = d$

解释:$I*I = sum_{d|n}I(d)I(frac{n}{d}) = sum_{d|n}1 = d(n)$

5.$mu*id = varphi$

解释:$mu*id = sum_{d|n}{mu(d)id(frac{n}{d})} = nsum_{d|n}{frac{mu(d)}{d}}$

$= n(1+frac{mu(p1)}{p1}+……+frac{mu(p1^{a1})}{p1^{a1}})(……)(1+frac{mu(pk)}{pk}+……+frac{pk^{ak}}{pk^{ak}})$

又由定义$mu(p^i)=0 (i>=2)$,$mu(p)=1 (p为质数)$

$ herefore 原式=n(1-frac{1}{p1})(1-frac{1}{p2})(……)(1-frac{1}{pk}) = varphi(n)$

6.$I*id = sigma$

解释:$I*id = sum_{d|n}{id(d)I(frac{n}{d})} = sum_{d|n}{d} = sigma(n)$

函数乘法一览表

$egin{matrix}
* & e(n) & d(n) & sigma(n) & varphi(n) & mu(n) & I(n) & id(n) \
e(n) & e(n) & d(n) & sigma(n) & varphi(n) & mu(n) & I(n) & id(n) \
d(n) & d(n) & - & - & sigma(n) & - & - & - \
sigma(n) & sigma(n) & - & - & - & - & - & - \
varphi(n) & varphi(n) & sigma(n) & - & - & - & id(n) & - \
mu(n) & mu(n) & - & - & - & - & e(n) & varphi(n) \
I(n) & I(n) & - & - & id(n) & e(n) & d(n) & sigma(n) \
id(n) & id(n) & - & - & - & varphi(n) & sigma(n) & nd(n) \
end{matrix}$

莫比乌斯反演

若$g(n) = sum_{d|n}f(d)$,则$f(n) = sum_{d|n}{g(d)mu(frac{n}{d})}$

解释:由上$g=f*I$,则$g*mu=f*I*mu$,又$mu*I=e,e*f=f$,所以$f=g*mu=sum_{d|n}{g(d)mu(frac{n}{d})}$

若$g(n) = sum_{n|d}^{d<=MAX} {f(d)}$,则$f(n) = sum_{n|d}^{d<=MAX} {g(d)mu(frac{d}{n})}$

解释:令$frac{d}{n} = k$,则$sum_{n|d}^{d<=MAX} {g(d)mu(frac{d}{n})} = sum_{k}^{nk<=MAX} {g(nk)mu(k)}$

$=sum_{k}^{nk<=MAX} {mu(k)sum_{nk|t}^{t<=MAX} {f(t)}}$

$=sum_{t}^{t<=MAX} {f(t)sum_{nk|t}{mu(k)}}$

又$sum_{nk|t}{mu(k)} = sum_{k|frac{t}{n}}{mu(k)} = mu(frac{t}{n})I(frac{t}{n}) = e(frac{t}{n})$

$ herefore sum_{t}^{t<=MAX} {f(t)sum_{nk|t}{mu(k)}} = sum_{t}^{t<=MAX} {f(t)e{(frac{t}{n})}}$

当且仅当$t = n$时$e != 0$,对求和有贡献

$ herefore sum_{t}^{t<=MAX} {f(t)e{(frac{t}{n})}}= f(n)$

原文地址:https://www.cnblogs.com/PHDHD/p/12040666.html