一般图匹配

简述一下“带花树”算法吧:
它的核心思想还是找增广路。假设已经匹配好了一堆点,我们从一个没有匹配的节点s开始,使用BFS生成搜索树。每当发现一个节点u,如果u还没有被匹配,那么就可以进行一次成功的增广;否则,我们就把节点u和它的配偶v一同接到树上,之后把v丢进队列继续搜索。我们给每个在搜索树上的点一个类型:S或者T。当u把它的配偶v扔进队列的时候,我们把u标记为T型,v标记为S型。于是,搜索树的样子是这样的:
       s
      /  
         
     |    |
     c    d
        
       u j
    | |  | |
    i j  v k
其中,黑色竖线相连的两个点是已经匹配好的,蓝色斜线表示两个点之间有边,但是没有配对。T型的用红色,S型的用黑色。
 
这里有个小问题:一个S型点d在某一步扩展的时候发现了点u,如果u已经在搜索树上了(即,出现了环),怎么办?
我们规定,如果u的类型是T型,就无视这次发现;(这意味着我们找到了一个长度为偶数的环,直接无视)
       s
      /  
         
     |    |
     c    d   如果连出来的边是指向T型点的,就无视这个边。
        
       
    | |    |
    i j    k
否则,我们找到了一个长度为奇数的环,就要进行一次“缩花”的操作!所谓缩花操作,就是把这个环缩成一个点。
       s
      /  
         
     |    |
     c    d
        
        
    | |   |
    i u<-+ k
这个图缩花之后变成了5个点(一个大点,或者叫一朵花,加原来的4个点):
缩点完成之后,还要把原来环里面的T型点统统变成S型点,之后扔到队列里去。
  +-------------+
  |             |
  |     s       |
  |    /  \     
  |           
  |   |    |    |   现在是一个点了!还是一个S点。
  |   c    d    |
  |     / \   
--    ------
| |             |   
| |             |   
 |             |   
| +-------------+   
|                   
e                   
|                   |
i                   k
为什么能缩成一个点呢?我们看一个长度为奇数的环(例如上图中的s-b-d-u-f-c-a-),如果我们能够给它中的任意一个点找一个出度(配偶),那么环中的其他点正好可以配成对,这说明,每个点的出度都是等效的。例如,假设我们能够图中的点d另找一个配偶(例如d'好了),那么,环中的剩下6个点正好能配成3对,一个不多,一个不少(算上d和d'一共4对刚刚好)。
-s-b-dd'         a s-b d-d'
 \           =>    \     
  cf-u              c f-u
这就是我们缩点的思想来源。有一个劳苦功高的计算机科学家证明了:缩点之前和缩点之后的图是否有增广路的情况是相同的。
缩起来的点又叫一朵花(blossom).
注意到,组成一朵花的里面可能嵌套着更小的花。
 
当我们最终找到一条增广路的时候,要把嵌套着的花层层展开,还原出原图上的增广路出来。
 
嗯,现在你对实现这个算法有任何想法吗?
天啊,还要缩点……写死谁。。。。。。
我一开始也是这么想的。
我看了一眼网上某个大牛的程序,之后结合自己的想法,很努力地写出了一个能AC的版本。
实现的要点有什么呢?
首先,我们不“显式”地表示花。我们记录一个Next数组,表示最终增广的时候的路径上的后继。同时,我们维护一个并查集,表示每个点现在在以哪个点为根的花里(一个花被缩进另一朵花之后就不算花了)。还要记录每个点的标记。
主程序是一段BFS。对于每个由x发展出来的点y,分4种情况讨论:
1。xy是配偶(不说夫妻,这是非二分图。。。)或者xy现在是一个点(在一朵花里):直接无视
2。y是T型点:直接无视
3。y目前单身:太好了,进行增广!
4。y是一个S型点:缩点!缩点!
缩点的时候要进行的工作:
1。找x和y的LCA(的根)p。找LCA可以用各种方法。。。直接朴素也行。
2。在Next数组中把x和y接起来(表示它们形成环了!)
3。从x、y分别走到p,修改并查集使得它们都变成一家人,同时沿路把Next数组接起来。
 
Next数组很奇妙。每时每刻,它实际形成了若干个挂在一起的双向链表来表示一朵花内部的走法。
     ----
    /    \--+
    |    |   |
    |    |--+
        
   ----------
  /          \
+-            --+
|               |
|               |
+----s  ------+     
 代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;

const int N = 250;

// 并查集维护
int belong[N];
int findb(int x) {
    return belong[x] == x ? x : belong[x] = findb(belong[x]);
}
void unit(int a, int b) {
    a = findb(a);
    b = findb(b);
    if (a != b) belong[a] = b;
}

int n, match[N];
vector<int> e[N];
int Q[N], rear;
int next[N], mark[N], vis[N];

// 朴素算法求某阶段中搜索树上两点x, y的最近公共祖先r
int LCA(int x, int y) {
    static int t = 0; t++;
    while (true) {
        if (x != -1) {
            x = findb(x); // 点要对应到对应的花上去
            if (vis[x] == t) return x;
            vis[x] = t;
            if (match[x] != -1) x = next[match[x]];
            else x = -1;
        }
        swap(x, y);
    }
}

void group(int a, int p) {
    while (a != p) {
        int b = match[ a ], c = next[ b ];

        // next数组是用来标记花朵中的路径的,综合match数组来用,实际上形成了
        // 双向链表,如(x, y)是匹配的,next[x]和next[y]就可以指两个方向了。
        if ( findb( c ) != p ) next[ c ] = b;

        // 奇环中的点都有机会向环外找到匹配,所以都要标记成S型点加到队列中去,
        // 因环内的匹配数已饱和,因此这些点最多只允许匹配成功一个点,在aug中
        // 每次匹配到一个点就break终止了当前阶段的搜索,并且下阶段的标记是重
        // 新来过的,这样做就是为了保证这一点。
        if (mark[b] == 2) mark[Q[rear++] = b] = 1;
        if (mark[c] == 2) mark[Q[rear++] = c] = 1;

        unit(a, b); unit(b, c);
        a = c;
    }
}

// 增广
void aug(int s) {
    for (int i = 0; i < n; i++) // 每个阶段都要重新标记
        next[i] = -1, belong[i] = i, mark[i] = 0, vis[i] = -1;
    mark[s] = 1;
    bool falg=false;
    Q[0] = s; rear = 1;
    for (int front = 0; match[s] == -1 && front < rear; front++) {
        int x = Q[front]; // 队列Q中的点都是S型的
        for (int i = 0; i < (int)e[x].size(); i++) {
            int y = e[x][i];
            if (match[x] == y) continue; // x与y已匹配,忽略
            if (findb(x) == findb(y)) continue; // x与y同在一朵花,忽略
            if (mark[y] == 2) continue; // y是T型点,忽略
            if (mark[y] == 1) { // y是S型点,奇环缩点
                int r = LCA(x, y); // r为从i和j到s的路径上的第一个公共节点
                if (findb(x) != r) next[ x ] = y; // r和x不在同一个花朵,next标记花朵内路径
                if (findb(y) != r) next[ y ] = x; // r和y不在同一个花朵,next标记花朵内路径

                // 将整个r -- x - y --- r的奇环缩成点,r作为这个环的标记节点,相当于论文中的超级节点
                group(x, r); // 缩路径r --- x为点
                group(y, r); // 缩路径r --- y为点
            }
            else if (match[y] == -1) { // y自由,可以增广,R12规则处理
                next[y] = x;
                for (int u = y; u != -1; ) { // 交叉链取反
                    int v = next[u];
                    int mv = match[v];
                    match[v] = u, match[u] = v;
                    u = mv;
                }
                falg=true;
                break; // 搜索成功,退出循环将进入下一阶段
            }
            else { // 当前搜索的交叉链+y+match[y]形成新的交叉链,将match[y]加入队列作为待搜节点
                next[y] = x;
                mark[Q[rear++] = match[y]] = 1; // match[y]也是S型的
                mark[y] = 2; // y标记成T型
            }
        }
      if(falg) break;
    }
}

bool g[N][N];
int main() {
    scanf("%d", &n);
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++) g[i][j] = false;
    // 建图,双向边
    int x, y; while(scanf("%d%d",&x,&y)==2)
    {
        x--, y--;
        if (x != y && !g[x][y])
            e[x].push_back(y), e[y].push_back(x);
        g[x][y] = g[y][x] = true;
    }
    // 增广匹配
    for (int i = 0; i < n; i++) match[i] = -1;
    for (int i = 0; i < n; i++)
        if (match[i] == -1)
        aug(i);

    // 输出答案
    int tot = 0;
    for (int i = 0; i < n; i++) if (match[i] != -1) tot++;
    printf("%d
", tot);
    for (int i = 0; i < n; i++) if (match[i] > i)
        printf("%d %d
", i + 1, match[i] + 1);
    return 0;
}
View Code
 
 
有权图的最大匹配怎么做?
看论文吧。。。用类似KM的方法,不过,是给每个花再来一个权值。真的很复杂。。。
有一个人写了代码,好像是GPL许可证。。。你最好想办法搜到它的网站来看看版权的问题;总之,我先贴出来:
原文地址:https://www.cnblogs.com/Opaser/p/4005201.html