二项式反演

[f(n)=sum_{i=0}^n{nchoose i}g(i) iff g(n)=sum_{i=0}^n(-1)^{(n-i)}{nchoose i} f(i) ]

证明如下:

[g(n)=sum_{i=0}^n(-1)^{n-i}{n choose i} sum_{j=0}^i {ichoose j}g(j)\ g(n)=sum_{i=0}^n sum_{j=0}^i (-1)^{n-i}{n choose i} {ichoose j}g(j)\ g(n)=sum_{j=0}^n sum_{i=j}^n (-1)^{n-i}{n choose i} {ichoose j}g(j)\ ]

[{i choose j}{j choose k}=frac{i!j!}{j!(i-j)!k!(j-k)!}\ =frac{i!(i-k)!}{(i-j)!(i-k)!k!(j-k)!}\ =frac{i!}{k!(i-k)!}frac{(i-k)!}{(i-j)!(j-k)!}\ =frac{i!}{k!(i-k)!}frac{(i-k)!}{(j-k)!((i-k)-(j-k))!}\ ={i choose k}{i-k choose j-k} ]

[g(n)=sum_{j=0}^n sum_{i=j}^n (-1)^{n-i}{n choose j} {n-jchoose i-j}g(j)\ g(n)=sum_{j=0}^n sum_{i=0}^{n-j} (-1)^{n-i-j}{n-jchoose i} {n choose j} g(j)\ ]

[sum_{i=0}^{n-j} (-1)^{n-i-j}{n-jchoose i}1^{i}\ (1-1)^{n-j} ]

[g(n)=sum_{j=0}^n (1-1)^{n-j}{n choose j} g(j)\ g(n)=g(n)\ ]

原文地址:https://www.cnblogs.com/NLDQY/p/11987205.html