[POI2011]DYN-Dynamite

题目链接:Click here

Solution:

直接做似乎不太可行,我们考虑二分

我们设(f[x])表示以(x)为根的子树中选择了的节点到(x)的距离的最小值,初值为(inf)

(g[x])则表示以(x)为根的子树中还未覆盖的关键点到(x)的距离的最大值,初值为(-inf)

考虑如何转移,当(f[x]>mid)(x)是关键点时,则说明(x)自己并没有被覆盖,(g[x]=max(0,g[x]))

(g[x]+f[x]<=mid)时,则说明(x)子树内的所有点都被覆盖了,那么我们把(g[x])重置

(g[x]==mid)时,则说明(x)这个点一定要选,那么(++tot\,,f[x]=0\, ,g[x]=-inf)

事实上上述的(dp)过程是不能随意更换顺序的,并且由于我们贪心的先处理儿子,所以还需要特判根节点

Code:

#include<cstdio>
#include<ctype.h>
#include<algorithm>
using namespace std;
const int N=3e5+11;
const int inf=192608170;
int n,m,cnt,head[N];
int tot,f[N],g[N],is[N];
struct Edge{int nxt,to;}edge[N<<1];
void ins(int x,int y){
    edge[++cnt].nxt=head[x];
    edge[cnt].to=y;head[x]=cnt;
}
void dfs(int x,int fa,int mid){
    f[x]=inf,g[x]=-inf;
    for(int i=head[x];i;i=edge[i].nxt){
        int y=edge[i].to;
        if(y==fa) continue;
        dfs(y,x,mid);
        f[x]=min(f[x],f[y]+1);
        g[x]=max(g[x],g[y]+1);
    }
    if(is[x]&&f[x]>mid) g[x]=max(0,g[x]);
    if(f[x]+g[x]<=mid) g[x]=-inf;
    if(g[x]==mid) f[x]=0,g[x]=-inf,++tot;
}
bool check(int mid){
    tot=0;dfs(1,0,mid);
    if(g[1]>=0) ++tot;
    return tot<=m;
}
int read(){
    int x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
    while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
    return x*f;
}
signed main(){
    n=read(),m=read();
    for(int i=1;i<=n;i++) is[i]=read();
    for(int i=1;i<n;i++){
        int x=read(),y=read();
        ins(x,y),ins(y,x);
    }
    int l=0,r=n,re=-1;
    while(l<=r){
        int mid=l+r>>1;
        if(check(mid)) re=mid,r=mid-1;
        else l=mid+1;
    }printf("%d
",re);
    return 0;
}
原文地址:https://www.cnblogs.com/NLDQY/p/11621695.html