BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】

题目链接

BZOJ

题解

orz
此题太优美了

我们令(frac{x}{y})为最简分数,则(x perp y)即,(gcd(x,y) = 1)

先不管(k)进制,我们知道(10)进制下如果(frac{x}{y})是纯循环的,只要(2 perp y)(5 perp y)
可以猜想在(k)进制下同样成立
证明:
(frac{x}{y})为纯循环小数,设其循环节长度为(l),那么一定满足

[{ frac{xk^{l}}{y} } = { frac{x}{y}} ]

其中({x})指小数部分
可以写成

[xk^{l}- lfloor frac{xk^{l}}{y} floor * y= x - lfloor frac{x}{y} floor * y ]

可以看出就是同余的形式

[xk^{l} equiv x pmod y ]

由于(x perp y)

[k^{l} equiv 1 pmod y ]

要使存在(l),使得式子成立,那么一定(k perp y)

所以我们有

[egin{aligned} ans &= sumlimits_{i = 1}^{n} sumlimits_{j = 1}^{m} [i perp j] [j perp k] \ &= sumlimits_{j = 1}^{m} [j perp k] sumlimits_{i = 1}^{n} [(i,j) == 1] \ &= sumlimits_{j = 1}^{m} [j perp k] sumlimits_{i = 1}^{n} epsilon((i,j)) \ &= sumlimits_{j = 1}^{m} [j perp k] sumlimits_{i = 1}^{n} sumlimits_{d|(i,j)} mu(d) \ &= sumlimits_{d = 1}^{n} mu(d) sumlimits_{d|i}^{n} sumlimits_{d|j}^{m} [j perp k] \ &= sumlimits_{d = 1}^{n} [d perp k] mu(d) lfloor frac{n}{d} floor sumlimits_{j}^{lfloor frac{m}{d} floor} [j perp k] \ end{aligned} ]

我们令

[f(n) = sumlimits_{i}^{n} [i perp k] ]

根据(gcd(i + k,k) = gcd(i,k)),我们有

[f(n) = lfloor frac{n}{k} floor f(k) + f(n mod k) ]

所以我们只需要(O(klogk))暴力计算(f(1....k))就可以(O(1))计算后面的式子了

现在考虑前面的

[sumlimits_{d = 1}^{n} [d perp k] mu(d) ]

为了使能整除分块,我们必须算出其前缀和

[g(n,k) = sumlimits_{i = 1}^{n} [i perp k] mu(d) ]

用类似上面同样的方法:

[egin{aligned} g(n,k) &= sumlimits_{i = 1}^{n} [i perp k] mu(i) \ &= sumlimits_{i = 1}^{n} mu(i) sumlimits_{d|i,d|k} mu(d) \ &= sumlimits_{d | k} mu(d) sumlimits_{d|i} mu(i) \ &= sumlimits_{d | k} mu(d) sumlimits_{i = 1}^{lfloor frac{n}{d} floor} mu(id) \ &= sumlimits_{d | k} mu(d) sumlimits_{i = 1}^{lfloor frac{n}{d} floor} [i perp d]mu(i) * mu(d) \ &= sumlimits_{d | k} mu(d)^2 sumlimits_{i = 1}^{lfloor frac{n}{d} floor} [i perp d]mu(i) \ &= sumlimits_{d | k} mu(d)^2 g(lfloor frac{n}{d} floor,d) \ end{aligned} ]

就可以递归求解
(n = 0)时,(g(0,k) = 0)
(k = 1)时,(g(n,1) = sumlimits_{i = 1}^{n} mu(i)),上杜教筛即可
因为(lfloor frac{n}{d} floor)只有(sqrt{n})种取值,(d)只能取(k)的因子,记其数量为(p)
那么求(g(n,k))总的复杂度为(O(psqrt{n} + n^{frac{2}{3}}))

于是乎我们就解决这道题了
总复杂度(O(psqrt{n} + n^{frac{2}{3}} + sqrt{n} + klogk))

#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define mp(a,b) make_pair<LL,LL>(a,b)
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000;
map<LL,LL> _mu;
map<LL,LL>::iterator it;
map<pair<LL,LL>,LL> G;
map<pair<LL,LL>,LL>::iterator IT;
int N;
int p[maxn],pi,isn[maxn];
LL Smu[maxn],f[maxn],mu[maxn];
LL n,m,K;
int gcd(int a,int b){return b ? gcd(b,a % b) : a;}
void init(){
	N = 1000000;
	mu[1] = 1;
	for (int i = 2; i <= N; i++){
		if (!isn[i]) p[++pi] = i,mu[i] = -1;
		for (int j = 1; j <= pi && i * p[j] <= N; j++){
			isn[i * p[j]] = true;
			if (i % p[j] == 0){
				mu[i * p[j]] = 0;
				break;
			}
			mu[i * p[j]] = -mu[i];
		}
	}
	for (int i = 1; i <= N; i++) Smu[i] = Smu[i - 1] + mu[i];
	for (int i = 1; i <= K; i++) f[i] = f[i - 1] + (gcd(i,K) == 1);
}
LL S(LL n){
	if (n <= N) return Smu[n];
	if ((it = _mu.find(n)) != _mu.end()) return it->second;
	LL ans = 1;
	for (LL i = 2,nxt; i <= n; i = nxt + 1){
		nxt = n / (n / i);
		ans -= (nxt - i + 1) * S(n / i);
	}
	return _mu[n] = ans;
}
LL F(LL n){
	return (n / K) * f[K] + f[n % K];
}
LL g(LL n,LL k){
	if ((IT = G.find(mp(n,k))) != G.end())
		return IT->second;
	if (n == 0) return 0;
	if (k == 1) return S(n);
	LL ans = 0;
	for (LL i = 1; i * i <= k; i++){
		if (k % i == 0){
			if (mu[i]) ans += g(n / i,i);
			if (i * i != k && mu[k / i])
				ans += g(n / (k / i),k / i);
		}
	}
	return G[mp(n,k)] = ans;
}
int main(){
	cin >> n >> m >> K;
	init();
	LL ans = 0,now,last = 0;
	for (LL i = 1,nxt; i <= min(n,m); i = nxt + 1){
		nxt = min(n / (n / i),m / (m / i));
		now = g(nxt,K);
		ans += 1ll * (now - last) * (n / i) * F(m / i);
		last = now;
	}
	cout << ans << endl;
	return 0;
}

原文地址:https://www.cnblogs.com/Mychael/p/9016220.html