redis 数据库

Redis 简介

redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。

 

*我们把这种要么一起成功,要么一起失败的操作叫原子性操作。如果把一个事务可看作是一个程序,它要么完整的被执行,要么完全不执行。这种特性就叫原子性。

 

Redis 安装

http://www.runoob.com/redis/redis-install.html

 

Redis 操作

String操作,redis中的String在在内存中按照一个name对应一个value来存储。如图:

set(name, value, ex=None, px=None, nx=False, xx=False)

1
2
3
4
5
6
在Redis中设置值,默认,不存在则创建,存在则修改
参数:
   ex,过期时间(秒)
   px,过期时间(毫秒)
   nx,如果设置为True,则只有name不存在时,当前set操作才执行
   xx,如果设置为True,则只有name存在时,岗前set操作才执行

setnx(name, value)

1
设置值,只有name不存在时,执行设置操作(添加)

setex(name, value, time)

1
2
3
# 设置值
# 参数:
    # time,过期时间(数字秒 或 timedelta对象)

psetex(name, time_ms, value)

1
2
3
# 设置值
# 参数:
    # time_ms,过期时间(数字毫秒 或 timedelta对象)

mset(*args, **kwargs)

1
2
3
4
5
批量设置值
如:
    mset(k1='v1', k2='v2')
    
    mget({'k1': 'v1', 'k2': 'v2'})

get(name)

1
获取值

mget(keys, *args)

1
2
3
4
5
批量获取
如:
    mget('ylr', 'wupeiqi')
    
    r.mget(['ylr', 'wupeiqi'])

getset(name, value)

1
设置新值并获取原来的值

getrange(key, start, end)

1
2
3
4
5
6
# 获取子序列(根据字节获取,非字符)
# 参数:
    # name,Redis 的 name
    # start,起始位置(字节)
    # end,结束位置(字节)
# 如: "武沛齐" ,0-3表示 "武"

setrange(name, offset, value)

1
2
3
4
# 修改字符串内容,从指定字符串索引开始向后替换(新值太长时,则向后添加)
# 参数:
    # offset,字符串的索引,字节(一个汉字三个字节)
    # value,要设置的值

setbit(name, offset, value)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# 对name对应值的二进制表示的位进行操作
 
# 参数:
    # name,redis的name
    # offset,位的索引(将值变换成二进制后再进行索引)
    # value,值只能是 1 或 0
 
# 注:如果在Redis中有一个对应: n1 = "foo",
        那么字符串foo的二进制表示为:01100110 01101111 01101111
    所以,如果执行 setbit('n1', 7, 1),则就会将第7位设置为1
        那么最终二进制则变成 01100111 01101111 01101111,即:"goo"
 
# 扩展,转换二进制表示:
 
    # source = "武沛齐"
    source = "foo"
 
    for i in source:
        num = ord(i)
        print bin(num).replace('b','')
 
    特别的,如果source是汉字 "武沛齐"怎么办?
    答:对于utf-8,每一个汉字占 3 个字节,那么 "武沛齐" 则有 9个字节
       对于汉字,for循环时候会按照 字节 迭代,那么在迭代时,将每一个字节转换 十进制数,然后再将十进制数转换成二进制
        11100110 10101101 10100110 11100110 10110010 10011011 11101001 10111101 10010000
        -------------------------- ----------------------------- -----------------------------
                    武                         沛                           齐

getbit(name, offset)

1
# 获取name对应的值的二进制表示中的某位的值 (0或1)

bitcount(key, start=None, end=None)

1
2
3
4
5
# 获取name对应的值的二进制表示中 1 的个数
# 参数:
    # key,Redis的name
    # start,位起始位置
    # end,位结束位置

bitop(operation, dest, *keys)

1
2
3
4
5
6
7
8
9
10
# 获取多个值,并将值做位运算,将最后的结果保存至新的name对应的值
 
# 参数:
    # operation,AND(并) 、 OR(或) 、 NOT(非) 、 XOR(异或)
    # dest, 新的Redis的name
    # *keys,要查找的Redis的name
 
# 如:
    bitop("AND", 'new_name', 'n1', 'n2', 'n3')
    # 获取Redis中n1,n2,n3对应的值,然后讲所有的值做位运算(求并集),然后将结果保存 new_name 对应的值中

strlen(name)

1
# 返回name对应值的字节长度(一个汉字3个字节)

incr(self, name, amount=1)

1
2
3
4
5
6
7
# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。
 
# 参数:
    # name,Redis的name
    # amount,自增数(必须是整数)
 
# 注:同incrby

incrbyfloat(self, name, amount=1.0)

1
2
3
4
5
# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。
 
# 参数:
    # name,Redis的name
    # amount,自增数(浮点型)

decr(self, name, amount=1)

1
2
3
4
5
# 自减 name对应的值,当name不存在时,则创建name=amount,否则,则自减。
 
# 参数:
    # name,Redis的name
    # amount,自减数(整数)

append(key, value)

1
2
3
4
5
# 在redis name对应的值后面追加内容
 
# 参数:
    key, redis的name
    value, 要追加的字符串

  

Hash操作,redis中Hash在内存中的存储格式如下图:

hset(name, key, value)

1
2
3
4
5
6
7
8
9
# name对应的hash中设置一个键值对(不存在,则创建;否则,修改)
 
# 参数:
    # name,redis的name
    # key,name对应的hash中的key
    # value,name对应的hash中的value
 
# 注:
    # hsetnx(name, key, value),当name对应的hash中不存在当前key时则创建(相当于添加)

hmset(name, mapping)

1
2
3
4
5
6
7
8
# 在name对应的hash中批量设置键值对
 
# 参数:
    # name,redis的name
    # mapping,字典,如:{'k1':'v1', 'k2': 'v2'}
 
# 如:
    # r.hmset('xx', {'k1':'v1', 'k2': 'v2'})

hget(name,key)

1
# 在name对应的hash中获取根据key获取value

hmget(name, keys, *args)

1
2
3
4
5
6
7
8
9
10
11
# 在name对应的hash中获取多个key的值
 
# 参数:
    # name,reids对应的name
    # keys,要获取key集合,如:['k1', 'k2', 'k3']
    # *args,要获取的key,如:k1,k2,k3
 
# 如:
    # r.mget('xx', ['k1', 'k2'])
    # 或
    # print r.hmget('xx', 'k1', 'k2')

hgetall(name)

1
获取name对应hash的所有键值

hlen(name)

1
# 获取name对应的hash中键值对的个数

hkeys(name)

1
# 获取name对应的hash中所有的key的值

hvals(name)

1
# 获取name对应的hash中所有的value的值

hexists(name, key)

1
# 检查name对应的hash是否存在当前传入的key

hdel(name,*keys)

1
# 将name对应的hash中指定key的键值对删除

hincrby(name, key, amount=1)

1
2
3
4
5
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数:
    # name,redis中的name
    # key, hash对应的key
    # amount,自增数(整数)

hincrbyfloat(name, key, amount=1.0)

1
2
3
4
5
6
7
8
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
 
# 参数:
    # name,redis中的name
    # key, hash对应的key
    # amount,自增数(浮点数)
 
# 自增name对应的hash中的指定key的值,不存在则创建key=amount

hscan(name, cursor=0, match=None, count=None)

1
2
3
4
5
6
7
8
9
10
11
12
13
# 增量式迭代获取,对于数据大的数据非常有用,hscan可以实现分片的获取数据,并非一次性将数据全部获取完,从而放置内存被撑爆
 
# 参数:
    # name,redis的name
    # cursor,游标(基于游标分批取获取数据)
    # match,匹配指定key,默认None 表示所有的key
    # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
 
# 如:
    # 第一次:cursor1, data1 = r.hscan('xx', cursor=0, match=None, count=None)
    # 第二次:cursor2, data1 = r.hscan('xx', cursor=cursor1, match=None, count=None)
    # ...
    # 直到返回值cursor的值为0时,表示数据已经通过分片获取完毕

hscan_iter(name, match=None, count=None)

1
2
3
4
5
6
7
8
9
# 利用yield封装hscan创建生成器,实现分批去redis中获取数据
 
# 参数:
    # match,匹配指定key,默认None 表示所有的key
    # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
 
# 如:
    # for item in r.hscan_iter('xx'):
    #     print item

  

List操作,redis中的List在在内存中按照一个name对应一个List来存储。如图:

lpush(name,values)

1
2
3
4
5
6
7
8
# 在name对应的list中添加元素,每个新的元素都添加到列表的最左边
 
# 如:
    # r.lpush('oo', 11,22,33)
    # 保存顺序为: 33,22,11
 
# 扩展:
    # rpush(name, values) 表示从右向左操作

lpushx(name,value)

1
2
3
4
# 在name对应的list中添加元素,只有name已经存在时,值添加到列表的最左边
 
# 更多:
    # rpushx(name, value) 表示从右向左操作

llen(name)

1
# name对应的list元素的个数

linsert(name, where, refvalue, value))

1
2
3
4
5
6
7
# 在name对应的列表的某一个值前或后插入一个新值
 
# 参数:
    # name,redis的name
    # where,BEFORE或AFTER
    # refvalue,标杆值,即:在它前后插入数据
    # value,要插入的数据

r.lset(name, index, value)

1
2
3
4
5
6
# 对name对应的list中的某一个索引位置重新赋值
 
# 参数:
    # name,redis的name
    # index,list的索引位置
    # value,要设置的值

r.lrem(name, value, num)

1
2
3
4
5
6
7
8
# 在name对应的list中删除指定的值
 
# 参数:
    # name,redis的name
    # value,要删除的值
    # num,  num=0,删除列表中所有的指定值;
           # num=2,从前到后,删除2个;
           # num=-2,从后向前,删除2个

lpop(name)

1
2
3
4
# 在name对应的列表的左侧获取第一个元素并在列表中移除,返回值则是第一个元素
 
# 更多:
    # rpop(name) 表示从右向左操作

lindex(name, index)

1
在name对应的列表中根据索引获取列表元素

lrange(name, start, end)

1
2
3
4
5
# 在name对应的列表分片获取数据
# 参数:
    # name,redis的name
    # start,索引的起始位置
    # end,索引结束位置

ltrim(name, start, end)

1
2
3
4
5
# 在name对应的列表中移除没有在start-end索引之间的值
# 参数:
    # name,redis的name
    # start,索引的起始位置
    # end,索引结束位置

rpoplpush(src, dst)

1
2
3
4
# 从一个列表取出最右边的元素,同时将其添加至另一个列表的最左边
# 参数:
    # src,要取数据的列表的name
    # dst,要添加数据的列表的name

blpop(keys, timeout)

1
2
3
4
5
6
7
8
# 将多个列表排列,按照从左到右去pop对应列表的元素
 
# 参数:
    # keys,redis的name的集合
    # timeout,超时时间,当元素所有列表的元素获取完之后,阻塞等待列表内有数据的时间(秒), 0 表示永远阻塞
 
# 更多:
    # r.brpop(keys, timeout),从右向左获取数据

brpoplpush(src, dst, timeout=0)

1
2
3
4
5
6
# 从一个列表的右侧移除一个元素并将其添加到另一个列表的左侧
 
# 参数:
    # src,取出并要移除元素的列表对应的name
    # dst,要插入元素的列表对应的name
    # timeout,当src对应的列表中没有数据时,阻塞等待其有数据的超时时间(秒),0 表示永远阻塞

自定义增量迭代

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 由于redis类库中没有提供对列表元素的增量迭代,如果想要循环name对应的列表的所有元素,那么就需要:
    # 1、获取name对应的所有列表
    # 2、循环列表
# 但是,如果列表非常大,那么就有可能在第一步时就将程序的内容撑爆,所有有必要自定义一个增量迭代的功能:
 
def list_iter(name):
    """
    自定义redis列表增量迭代
    :param name: redis中的name,即:迭代name对应的列表
    :return: yield 返回 列表元素
    """
    list_count = r.llen(name)
    for index in xrange(list_count):
        yield r.lindex(name, index)
 
# 使用
for item in list_iter('pp'):
    print item

Set操作,Set集合就是不允许重复的列表

sadd(name,values)

1
# name对应的集合中添加元素

scard(name)

1
获取name对应的集合中元素个数

sdiff(keys, *args)

1
在第一个name对应的集合中且不在其他name对应的集合的元素集合

sdiffstore(dest, keys, *args)

1
# 获取第一个name对应的集合中且不在其他name对应的集合,再将其新加入到dest对应的集合中

sinter(keys, *args)

1
# 获取多一个name对应集合的并集

sinterstore(dest, keys, *args)

1
# 获取多一个name对应集合的并集,再讲其加入到dest对应的集合中

sismember(name, value)

1
# 检查value是否是name对应的集合的成员

smembers(name)

1
# 获取name对应的集合的所有成员

smove(src, dst, value)

1
# 将某个成员从一个集合中移动到另外一个集合

spop(name)

1
# 从集合的右侧(尾部)移除一个成员,并将其返回

srandmember(name, numbers)

1
# 从name对应的集合中随机获取 numbers 个元素

srem(name, values)

1
# 在name对应的集合中删除某些值

sunion(keys, *args)

1
# 获取多一个name对应的集合的并集

sunionstore(dest,keys, *args)

1
# 获取多一个name对应的集合的并集,并将结果保存到dest对应的集合中

sscan(name, cursor=0, match=None, count=None)
sscan_iter(name, match=None, count=None)

1
# 同字符串的操作,用于增量迭代分批获取元素,避免内存消耗太大

 

有序集合,在集合的基础上,为每元素排序;元素的排序需要根据另外一个值来进行比较,所以,对于有序集合,每一个元素有两个值,即:值和分数,分数专门用来做排序。

zadd(name, *args, **kwargs)

1
2
3
4
5
# 在name对应的有序集合中添加元素
# 如:
     # zadd('zz', 'n1', 1, 'n2', 2)
     # 或
     # zadd('zz', n1=11, n2=22)

zcard(name)

1
# 获取name对应的有序集合元素的数量

zcount(name, min, max)

1
# 获取name对应的有序集合中分数 在 [min,max] 之间的个数

zincrby(name, value, amount)

1
# 自增name对应的有序集合的 name 对应的分数

r.zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 按照索引范围获取name对应的有序集合的元素
 
# 参数:
    # name,redis的name
    # start,有序集合索引起始位置(非分数)
    # end,有序集合索引结束位置(非分数)
    # desc,排序规则,默认按照分数从小到大排序
    # withscores,是否获取元素的分数,默认只获取元素的值
    # score_cast_func,对分数进行数据转换的函数
 
# 更多:
    # 从大到小排序
    # zrevrange(name, start, end, withscores=False, score_cast_func=float)
 
    # 按照分数范围获取name对应的有序集合的元素
    # zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=float)
    # 从大到小排序
    # zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=float)

zrank(name, value)

1
2
3
4
# 获取某个值在 name对应的有序集合中的排行(从 0 开始)
 
# 更多:
    # zrevrank(name, value),从大到小排序

zrangebylex(name, min, max, start=None, num=None)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 当有序集合的所有成员都具有相同的分值时,有序集合的元素会根据成员的 值 (lexicographical ordering)来进行排序,而这个命令则可以返回给定的有序集合键 key 中, 元素的值介于 min 和 max 之间的成员
# 对集合中的每个成员进行逐个字节的对比(byte-by-byte compare), 并按照从低到高的顺序, 返回排序后的集合成员。 如果两个字符串有一部分内容是相同的话, 那么命令会认为较长的字符串比较短的字符串要大
 
# 参数:
    # name,redis的name
    # min,左区间(值)。 + 表示正无限; - 表示负无限; ( 表示开区间; [ 则表示闭区间
    # min,右区间(值)
    # start,对结果进行分片处理,索引位置
    # num,对结果进行分片处理,索引后面的num个元素
 
# 如:
    # ZADD myzset 0 aa 0 ba 0 ca 0 da 0 ea 0 fa 0 ga
    # r.zrangebylex('myzset', "-", "[ca") 结果为:['aa', 'ba', 'ca']
 
# 更多:
    # 从大到小排序
    # zrevrangebylex(name, max, min, start=None, num=None)

zrem(name, values)

1
2
3
# 删除name对应的有序集合中值是values的成员
 
# 如:zrem('zz', ['s1', 's2'])

zremrangebyrank(name, min, max)

1
# 根据排行范围删除

zremrangebyscore(name, min, max)

1
# 根据分数范围删除

zremrangebylex(name, min, max)

1
# 根据值返回删除

zscore(name, value)

1
# 获取name对应有序集合中 value 对应的分数

zinterstore(dest, keys, aggregate=None)

1
2
# 获取两个有序集合的交集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为:  SUM  MIN  MAX

zunionstore(dest, keys, aggregate=None)

1
2
# 获取两个有序集合的并集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为:  SUM  MIN  MAX

zscan(name, cursor=0, match=None, count=None, score_cast_func=float)
zscan_iter(name, match=None, count=None,score_cast_func=float)

1
# 同字符串相似,相较于字符串新增score_cast_func,用来对分数进行操作

  

其他常用操作

delete(*names)

1
# 根据删除redis中的任意数据类型

exists(name)

1
# 检测redis的name是否存在

keys(pattern='*')

1
2
3
4
5
6
7
# 根据模型获取redis的name
 
# 更多:
    # KEYS * 匹配数据库中所有 key 。
    # KEYS h?llo 匹配 hello , hallo 和 hxllo 等。
    # KEYS h*llo 匹配 hllo 和 heeeeello 等。
    # KEYS h[ae]llo 匹配 hello 和 hallo ,但不匹配 hillo

expire(name ,time)

1
# 为某个redis的某个name设置超时时间

rename(src, dst)

1
# 对redis的name重命名为

move(name, db))

1# 将redis的某个值移动到指定的db下
 

randomkey()

1# 随机获取一个redis的name(不删除)
 

type(name)

1# 获取name对应值的类型
 

scan(cursor=0, match=None, count=None)
scan_iter(match=None, count=None)

1
# 同字符串操作,用于增量迭代获取key

 

 

4。管道

import redis

pool = redis.ConnectionPool()

r = redis.Redis(connection_pool=pool)

# pipe = r.pipeline(transaction=False)
pipe = r.pipeline(transaction=True)
pipe.multi()

pipe.set('name', 'yuan')
pipe.set('role', '123')

pipe.execute()

发布订阅

client

import redis

r=redis.Redis()

pub=r.pubsub()
pub.subscribe("fm104.6")
pub.parse_response()

while True:
    print("working....")
    msg= pub.parse_response()
    print(msg)

server

import redis

redis=redis.Redis()

while 1:
    msg=input(">>>>")
    redis.publish("fm104.5",msg)


Redis常用命令 1、键值相关命令
keys *|key*|key???
exists key:确认一个 key 是否存在
del key:删除一个 key
expire key seconeds:设置一个 key 的过期时间(单位:秒)
move:将当前数据库中的 key 转移到其它数据库中。
persist:移除给定 key 的过期时间
ttl:查看过期还需要多长时间
randomkey:随机返回命名空间的一个key
renamekey:重命名key
type:返回值类型


2、元务器相关命令
ping:测试连接是否存活
echo:在命令行打印一些内容
select:选择数据库。Redis 数据库编号从 0~15,我们可以选择任意一个数据库来进行数据的存取。
quit:退出连接。
dbsize:返回当前数据库中 key 的数目。
info:获取服务器的信息和统计。
monitor:实时转储收到的请求。
config:获取服务器配置信息。
flushdb:删除当前选择数据库中的所有 key。
flushall:删除所有数据库中的所有 key。
Redis高级使用属性 1、安全性:设置每次命令之前都要确认密码|在redis.conf配置文件中修改 requirepass


2、主从复制
2.1 特点
(1)master可以拥有多个slave
(2)多个slave可以连接同一个master外,还可以连接其他slave
(3)主从复制不会阻塞master,同步数据,master可以继续处理client。
(4)提高系统的伸缩性
2.2、搭建过程


3、事务控制
3.1 简单事务控制
multi-->事务begin
exec-->退出提交
3.2 事务回滚
muliti-->事务begin
discard-->事务回滚


4、持久化
4.1 snapshotting(默认)-快照方式
将数据以快照的方式写入到二进制文件中,也是dump.rpb。执行save、bgsave的时候会对dump.rpb


保存方式
save:手动存储、阻塞当前线程,把内存数据存到dump.rpb中。
bgsave:开启子线程、调用fork操作,后台将内存数据存到dump.rpb中。
redis.conf中默认设置为自动bgsave。


缺陷:
假设有client1、client2.
client1执行flushall、把内存数据全部清除。
client2执行的时候,因为之前数据在未知情况下被清除,这样就会造成很大的麻烦。
通常情况下,我们先把save之前,把相应dump.rpb转移到其他目录下进行保存,利于数据恢复。
4.2 aof(append-only file)-->如果应用要求不能丢失任何修改的话,可以采用 aof 持久化方式
机制:默认每隔一秒,redis会收到写命令,把内容追加到appendonnly.aof文件中。
配置redis.conf
appendonly yes //启用 aof 持久化方式
# appendfsync always //收到写命令就立即写入磁盘,最慢,但是保证完全的持久化
appendfsync everysec //每秒钟写入磁盘一次,在性能和持久化方面做了很好的折中
# appendfsync no //完全依赖 os,性能最好,持久化没保证
5、发布及订阅消息
5.1 订阅者 subscribe 通道例如tv1/tv2/tv3 psubscribe tv*例如tv开头的消息都能收到
5.2 发送者 publish tv1 message
5.3 退出订阅模式:unsubscribe、unpsubscribe


6、Pipeline 批量发送请求
1、普通方式
基于tcp的连接方式,每次都要等着回复才能执行
2、Pipeline方式
多个命令执行完以后,然后把执行结构返回给客户端。


7、虚拟内存相关配置
vm-enabled yes #开启 vm 功能
vm-swap-file /tmp/redis.swap #交换出来的 value 保存的文件路径
vm-max-memory 1000000 #redis 使用的最大内存上限
vm-page-size 32 #每个页面的大小 32 个字节
vm-pages 134217728 #最多使用多少页面
vm-max-threads 4 #用于执行 value 对象换入换出的工作线程数量
Redis 持久化磁盘 IO 方式及其带来的问题

 

有 Redis 线上运维经验的人会发现 Redis 在物理内存使用比较多,但还没有超过实际物理内存总容量时就会发生不稳定甚至崩溃的问题,有人认为是基于快照方式持久化的 fork 系统调用造成内存占用加倍而导致的,这种观点是不准确的,因为 fork 调用的 copy-on-write 机制是基于操作系统页这个单位的,也就是只有有写入的脏页会被复制,但是一般你的系统不会在短时间内所有的页都发生了写入而导致复制,那么是什么原因导致 Redis 崩溃的呢?

  答案是 Redis 的持久化使用了 Buffer IO 造成的,所谓 Buffer IO 是指 Redis 对持久化文件的写入和读取操作都会使用物理内存的 Page Cache,而大多数数据库系统会使用 Direct IO 来绕过这层 Page Cache 并自行维护一个数据的 Cache,而当 Redis 的持久化文件过大(尤其是快照文件),并对其进行读写时,磁盘文件中的数据都会被加载到物理内 存中作为操作系统对该文件的一层 Cache,而这层 Cache 的数据与 Redis 内存中管理的数据实际是重复存储的,虽然内核在物理内存紧张时会做 Page Cache 的剔除工作,但内核很可能认为某块 Page Cache 更重要,而让你的进程开始 Swap,这时你的系统就会开始出现不稳定或者崩溃了。我们的经验是当你的 Redis 物理内存使用超过内存总容量的3/5时就会开始比较危险了。

原文地址:https://www.cnblogs.com/Mr-Murray/p/9715160.html