[AT697]フィボナッチ

题目大意:给你$n,k(nleqslant10^9,kleqslant10^3)$,求$f_n$。$f$数组满足$f_1=f_2=cdots=f_k=1$,$f_n=sumlimits_{i=n-k}^{n-1}f_i$

题解:线性齐次递推:
$$
left[
egin{matrix}
f_1&f_2&cdots&f_k
end{matrix}
ight]
left[
egin{matrix}
0&0&0&cdots&0&1\
1&0&0&cdots&0&1\
0&1&0&cdots&0&1\
0&0&1&cdots&0&1\
vdots&vdots&ddots&ddots&vdots&vdots\
0&0&0&cdots&1&1
end{matrix}
ight]
=
left[
egin{matrix}
f_2&f_3&cdots&f_{k+1}
end{matrix}
ight]
$$
特征多项式$G_k(x)$为:
$$
egin{align*}
G_k(x)&=|lambda I-A|\
&=left|
left[
egin{matrix}
lambda&0&0&cdots&0&-1\
-1&lambda&0&cdots&0&-1\
0&-1&lambda&cdots&0&-1\
0&0&-1&cdots&0&-1\
vdots&vdots&ddots&ddots&vdots&vdots\
0&0&0&cdots&-1&lambda-1
end{matrix}
ight] ight|
end{align*}
$$
可以对第一行展开
$$
egin{align*}
G_k(x)&=(-1)^{1+1}lambda G_{k-1}(x)+(-1)(-1)^{k-1}(-1)^{k+1}\
&=lambda G_{k-1}(x)-1\
&=lambda^k-lambda^{k-1}-lambda^{k-2}-cdots-1
end{align*}
$$
发现模数是$10^9+7$,但是$k$只有$10^3$,所以直接$O(k^2)$卷积和取模,总复杂度$O(k^2log_2n)$

卡点:

C++ Code:

#include <algorithm>
#include <cstdio>
#include <cstring>
#define maxn 2010
const int mod = 1e9 + 7;

#define mul(x, y) static_cast<long long> (x) * (y) % mod
inline void reduce(int &x) { x += x >> 31 & mod; }

int n, K;
int f[maxn], g[maxn];

void PW(int n) {
	if (n == 0) { f[0] = 1; return ; }
	PW(n >> 1);
	std::memset(g, 0, K << 3);
	for (int i = 0; i < K; ++i)
		for (int j = 0; j < K; ++j)
			reduce(g[i + j + (n & 1)] += mul(f[i], f[j]) - mod);
	for (int i = K + K - 1 + (n & 1); i >= K; --i) {
		for (int j = 1; j <= K; ++j) reduce(g[i - j] += g[i] - mod);
	}
	std::memcpy(f, g, K << 2);
}

int main() {
	scanf("%d%d", &K, &n);
	PW(n - 1);
	int ans = 0;
	for (int i = 0; i < K; ++i) reduce(ans += f[i] - mod);
	printf("%d
", ans);
	return 0;
}

  

原文地址:https://www.cnblogs.com/Memory-of-winter/p/10398167.html