Java数据结构之链表(Linked List)

1.链表(Linked List)介绍

链表是有序的列表,但是它在内存存储结构如下:

2.特点:

  • 链表是以节点的方式来存储,是链式存储
  • 每个节点包含 data 域, next 域:指向下一个节点.
  • 链表的各个节点不一定是连续存储.
  • 链表分带头节点的链表和没有头节点的链表,根据实际的需求来确定

3.单链表介绍

单链表(带头结点) 逻辑结构示意图如下:

4.应用示例:

使用带head头的单向链表实现 –水浒英雄排行榜管理,完成对英雄人物的增删改查操作

第一种方法在添加英雄时,直接添加到链表的尾部

思路分析

添加(创建)

  • 先创建一个head头节点,表示单链表的头
  • 在添加英雄时,根据排名将英雄插入到指定位置(如果有这个排名,则添加失败,并给出提示)

遍历

  • 通过一个辅助变量遍历,帮助遍历整个链表。

删除节点

 

链表数据结构实现:

//定义HeroNode , 每个HeroNode 对象就是一个节点
class HeroNode {
    public int no;  // 排名
    public String name;
    public String nickname;
    public HeroNode next; //指向下一个节点
    //构造器
    public HeroNode(int no, String name, String nickname) {
        this.no = no;
        this.name = name;
        this.nickname = nickname;
    }
    //为了显示方法,我们重新toString
    @Override
    public String toString() {
        return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]";
    }
}

辅助管理链表类:

需要注意,链表维护的表头节点head 不能动,因此处理时需要一个temp辅助节点找到待删除节点的前一个节点

//定义SingleLinkedList 管理我们的英雄
class SingleLinkedList {
    //先初始化一个头节点, 头节点不要动, 不存放具体的数据
    private HeroNode head = new HeroNode(0, "", "");
    
    
    //返回头节点
    public HeroNode getHead() {
        return head;
    }

    //添加节点到单向链表
    //思路,当不考虑编号顺序时
    //1. 找到当前链表的最后节点
    //2. 将最后这个节点的next 指向 新的节点
    public void add(HeroNode heroNode) {
        
        //因为head节点不能动,因此我们需要一个辅助遍历 temp
        HeroNode temp = head;
        //遍历链表,找到最后
        while(true) {
            //找到链表的最后
            if(temp.next == null) {//
                break;
            }
            //如果没有找到最后, 将将temp后移
            temp = temp.next;
        }
        //当退出while循环时,temp就指向了链表的最后
        //将最后这个节点的next 指向 新的节点
        temp.next = heroNode;
    }
    
    //第二种方式在添加英雄时,根据排名将英雄插入到指定位置
    //(如果有这个排名,则添加失败,并给出提示)
    public void addByOrder(HeroNode heroNode) {
        //因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
        //因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了
        HeroNode temp = head;
        boolean flag = false; // flag标志添加的编号是否存在,默认为false
        while(true) {
            if(temp.next == null) {//说明temp已经在链表的最后
                break; //
            } 
            if(temp.next.no > heroNode.no) { //位置找到,就在temp的后面插入
                break;
            } else if (temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在
                
                flag = true; //说明编号存在
                break;
            }
            temp = temp.next; //后移,遍历当前链表
        }
        //判断flag 的值
        if(flag) { //不能添加,说明编号存在
            System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入
", heroNode.no);
        } else {
            //插入到链表中, temp的后面
            heroNode.next = temp.next;
            temp.next = heroNode;
        }
    }

    //修改节点的信息, 根据no编号来修改,即no编号不能改.
    //说明
    //1. 根据 newHeroNode 的 no 来修改即可
    public void update(HeroNode newHeroNode) {
        //判断是否空
        if(head.next == null) {
            System.out.println("链表为空~");
            return;
        }
        //找到需要修改的节点, 根据no编号
        //定义一个辅助变量
        HeroNode temp = head.next;
        boolean flag = false; //表示是否找到该节点
        while(true) {
            if (temp == null) {
                break; //已经遍历完链表
            }
            if(temp.no == newHeroNode.no) {
                //找到
                flag = true;
                break;
            }
            temp = temp.next;
        }
        //根据flag 判断是否找到要修改的节点
        if(flag) {
            temp.name = newHeroNode.name;
            temp.nickname = newHeroNode.nickname;
        } else { //没有找到
            System.out.printf("没有找到 编号 %d 的节点,不能修改
", newHeroNode.no);
        }
    }
    
    //删除节点
    //思路
    //1. head 不能动,因此我们需要一个temp辅助节点找到待删除节点的前一个节点
    //2. 说明我们在比较时,是temp.next.no 和  需要删除的节点的no比较
    public void del(int no) {
        HeroNode temp = head;
        boolean flag = false; // 标志是否找到待删除节点的
        while(true) {
            if(temp.next == null) { //已经到链表的最后
                break;
            }
            if(temp.next.no == no) {
                //找到的待删除节点的前一个节点temp
                flag = true;
                break;
            }
            temp = temp.next; //temp后移,遍历
        }
        //判断flag
        if(flag) { //找到
            //可以删除
            temp.next = temp.next.next;
        }else {
            System.out.printf("要删除的 %d 节点不存在
", no);
        }
    }
    
    //显示链表[遍历]
    public void list() {
        //判断链表是否为空
        if(head.next == null) {
            System.out.println("链表为空");
            return;
        }
        //因为头节点,不能动,因此我们需要一个辅助变量来遍历
        HeroNode temp = head.next;
        while(true) {
            //判断是否到链表最后
            if(temp == null) {
                break;
            }
            //输出节点的信息
            System.out.println(temp);
            //将temp后移, 一定小心
            temp = temp.next;
        }
    }
}
View Code

 【腾讯面试题】单链表的反转

思路:

先定义一个节点reverseHead = new HeroNode();

从头到尾遍历原来的链表,每遍历一个节点,就将其取出,并放在新的链表reverseHead的最前端

原来的链表的head.next = reverseHead.net

代码实现

// 将单链表反转
public static void reversetList(HeroNode head){
    // 如果当前链表为空,或者只有一个节点,无需反转,直接返回
    if(head.next == null || head.next.next == null){
        return;
    }
    // 定义一个辅助的指针(变量),帮助我们遍历原来的链表
    HeroNode cur = head.next;
    HeroNode next = null;    //指向当前节点[cur]的下一个节点
    HeroNode reverseHead = new HeroNode(0,"","");
    // 遍历原来的链表,每遍历一个节点,就将其取出,并放在新的链表 reverseHead的最前端
    while(cur != null){
        next = cur.next;    // 先暂时保存当前节点的下一个节点
        cur.next = reverseHead.next;    // 将cur的下一个节点指向新的链表的最前端
        reverseHead.next = cur;            // 将cur链接到新的链表上
        cur = next;            // 将cur后移
    }
    // 将head.next指向reverseHead.next,实现单链表的反转
    head.next = reverseHead.next;
}
View Code

 【百度面试题】从尾到头打印单链表(要求方式1:反向遍历,方式2:Stack栈)

思路:

  • 方式1:先将单链表进行反转操作,然后再遍历即可,这样做的问题是会破坏原来的单链表结构,不建议
  • 方式2:可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果。

方式2代码实现

// 单链表逆序打印
public static void reversePrint(HeroNode head){
    if(head.next == null){
        return;
    }
    // 创建一个栈
    Stack<HeroNode> stack = new Stach<HeroNode>();
    HeroNode cur = head.next;
    // 遍历链表将所有的节点压入栈
    while(cur != null){
        stack.push(cur);
        cur = cur.next;
    }
    
    // 将栈中的节点进行打印,pop出栈
    while(stack.size() > 0){
        System.out.println(stack.pop());    // 利用stack先入后出的特点
    }
}
原文地址:https://www.cnblogs.com/MWCloud/p/11239615.html