McGan: Mean and Covariance Feature Matching GAN

Mroueh Y, Sercu T, Goel V, et al. McGan: Mean and Covariance Feature Matching GAN[J]. arXiv: Learning, 2017.

@article{mroueh2017mcgan:,
title={McGan: Mean and Covariance Feature Matching GAN},
author={Mroueh, Youssef and Sercu, Tom and Goel, Vaibhava},
journal={arXiv: Learning},
year={2017}}

利用均值和协方差构建IPM, 获得相应的mean GAN 和 covariance gan.

主要内容

IPM:

[d_{mathscr{F}} (mathbb{P}, mathbb{Q}) = sup_{f in mathscr{F}} |mathbb{E}_{x sim mathbb{P}} f(x) - mathbb{E}_{x sim mathbb{Q}} f(x)|. ]

(mathscr{F})是对称空间, 即(fin mathscr{F} ightarrow -f in mathscr{F}),可得

[d_{mathscr{F}} (mathbb{P}, mathbb{Q}) = sup_{f in mathscr{F}} ig {mathbb{E}_{x sim mathbb{P}} f(x) - mathbb{E}_{x sim mathbb{Q}} f(x) ig}. ]

Mean Matching IPM

[mathscr{F}_{v,w,p}:= {f(x)=langle v, Phi_w(x) angle | vin mathbb{R}^m, |v|_p le 1, Phi_w:mathcal{X} ightarrow mathbb{R}^m, w in Omega}, ]

其中(|cdot |_p)表示(ell_p)范数, (Phi_w)往往用网络来表示, 我们可通过截断(w)来使得(mathscr{F}_{v,w,p})为有界线性函数空间(有界从而使得后面推导中(sup)成为(max)).

在这里插入图片描述
其中

[mu_w(mathbb{P})= mathbb{E}_{x sim mathbb{P}} [Phi_w(x)] in mathbb{R}^m. ]

最后一个等式的成立是因为:

[|x|_* = max {langle v, x angle | |v| le 1}, ]

(| cdot |_p)的对偶范数是(|cdot|_q, frac{1}{p}+frac{1}{q}=1).

prime

整个GAN的训练过程即为

[ ag{3} min_{g_ heta} max_{w in Omega} max_{v, |v|_p le 1} mathscr{L}_{mu} (v,w, heta), ]

其中

[mathscr{L}_{mu} (v,w, heta) = langle v, mathbb{E}_{x in mathbb{P}_r} Phi_w(x) - mathbb{E}_{z sim p(z)} Phi_w(g_{ heta} (z)) angle. ]

估计形式为
在这里插入图片描述

dual

也有对应的dual形态

[ ag{4} min_{g_ heta} max_{w in Omega} |mu_w(mathbb{P}_r) - mu_w (mathbb{P}_{ heta})|_q. ]

在这里插入图片描述

Covariance Feature Matching IPM

[mathscr{F}_{U, V,w} := {f(x)= sum_{j=1}^k langle u_j, Phi_w(x) angle langle v_j, Phi_w(x) angle, langle u_i, u_j angle = langle v_i, v_j angle =0, i ot = j, else :1 }, ]

等价于

[mathscr{F}_{U, V,w} := {f(x)= langle U^T Phi_w(x), V^TPhi_w(x) angle, U^TU=I_k, V^TV=I_k, w in Omega }. ]

并有
在这里插入图片描述

其中([A]_k)表示(A)(k)阶近似, 如果(A = sum_i sigma_iu_iv_i^T), (sigma_1ge sigma_2,ldots), 则([A]_k=sum_{i=1}^k sigma_i u_iv_i^T). (mathcal{O}_{m,k} := {M in mathbb{R}^{m imes k} | M^TM = I_k }), (|A|_*=sum_i sigma_i)表示算子范数.

prime

[ ag{6} min_{g_ heta} max_{w in Omega} max_{U,V in mathcal{P}_{m, k}} mathscr{L}_{sigma} (U, V,w, heta), ]

其中

[mathscr{L}_{sigma} (U,V,w, heta) = mathbb{E}_{x sim mathbb{P}_r} langle U^T Phi_w(x), V^TPhi_w(x) angle- mathbb{E}_{z sim p_z} langle U^T Phi_w(g_{ heta}(z)), V^TPhi_w(g_{ heta}(z)) angle. ]

采用下式估计

在这里插入图片描述

dual

[ ag{7} min_{g_{ heta}} max_{w in Omega} | [Sigma_w(mathbb{P}_r) - Sigma_w(mathbb{P}_{ heta})]_k|_*. ]

注: 既然(Sigma_w(mathbb{P}_r) - Sigma_w(mathbb{P}_{ heta}))是对称的, 为什么(U ot =V)? 因为虽然其对称, 但是并不(半)正定, 所以(v_i=-u_i)也是有可能的.

算法

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

代码

未经测试.



import torch
import torch.nn as nn
from torch.nn.functional import relu
from collections.abc import Callable



def preset(**kwargs):
    def decorator(func):
        def wrapper(*args, **nkwargs):
            nkwargs.update(kwargs)
            return func(*args, **nkwargs)
        wrapper.__doc__ = func.__doc__
        wrapper.__name__ = func.__name__
        return wrapper
    return decorator


class Meanmatch(nn.Module):

    def __init__(self, p, dim, dual=False, prj='l2'):
        super(Meanmatch, self).__init__()
        self.norm = p
        self.dual = dual
        if dual:
            self.dualnorm = self.norm
        else:
            self.init_weights(dim)
            self.projection = self.proj(prj)


    @property
    def dualnorm(self):
        return self.__dualnorm

    @dualnorm.setter
    def dualnorm(self, norm):
        if norm == 'inf':
            norm = float('inf')
        elif not isinstance(norm, float):
            raise ValueError("Invalid norm")

        p = 1 / (1 - 1 / norm)
        self.__dualnorm = preset(p=p, dim=1)(torch.norm)


    def init_weights(self, dim):
        self.weights = nn.Parameter(torch.rand((1, dim)),
                                    requires_grad=True)

    @staticmethod
    def _proj1(x):
        u = x.max()
        if u <= 1.:
            return x
        l = 0.
        c = (u + l) / 2
        while (u - l) > 1e-4:
            r = relu(x - c).sum()
            if r > 1.:
                l = c
            else:
                u = c
            c = (u + l) / 2
        return relu(x - c)

    @staticmethod
    def _proj2(x):
        return x / torch.norm(x)

    @staticmethod
    def _proj3(x):
        return x / torch.max(x)

    def proj(self, prj):
        if prj == "l1":
            return self._proj1
        elif prj == "l2":
            return self._proj2
        elif prj == "linf":
            return self._proj3
        else:
            assert isinstance(prj, Callable), "Invalid prj"
            return prj



    def forward(self, real, fake):
        temp = (real - fake).mean(dim=1)
        if self.dual:
            return self.dualnorm(temp)
        elif not self.training and self.dual:
            raise TypeError("just for training...")
        else:
            self.weights.data = self.projection(self.weights.data) #some diff here!!!!!!!!!!
            return self.weights @ temp



class Covmatch(nn.Module):

    def __init__(self, dim, k):
        super(Covmatch, self).__init__()
        self.init_weights(dim, k)

    def init_weights(self, dim, k):
        temp1 = torch.rand((dim, k))
        temp2 = torch.rand((dim, k))
        self.U = nn.Parameter(temp1, requires_grad=True)
        self.V = nn.Parameter(temp2, requires_grad=True)

    def qr(self, w):
        q, r = torch.qr(w)
        sign = r.diag().sign()
        return q * sign

    def update_weights(self):
        self.U.data = self.qr(self.U.data)
        self.V.data = self.qr(self.V.data)

    def forward(self, real, fake):
        self.update_weights()
        temp1 = real @ self.U
        temp2 = real @ self.V
        temp3 = fake @ self.U
        temp4 = fake @ self.V
        part1 = torch.trace(temp1 @ temp2.t()).mean()
        part2 = torch.trace(temp3 @ temp4.t()).mean()
        return part1 - part2


原文地址:https://www.cnblogs.com/MTandHJ/p/12715732.html